Have a personal or library account? Click to login
On uniform exponential splitting for noninvertible evolution operators in Banach Spaces Cover

On uniform exponential splitting for noninvertible evolution operators in Banach Spaces

Open Access
|Apr 2016

References

  1. [1] B. Aulbach and J. Kalkbrenner, Exponential forward splitting for noninvertible difference equations, Comput. Math. Appl., 42, (2001), 743-75410.1016/S0898-1221(01)00194-8
  2. [2] M. G. Babuţia and M. Megan, Exponential dichotomy concepts for evolution operators on the half-line, Ann. Acad. Rom. Sci. Ser. Math. Appl., 7, (2015), 209-226
  3. [3] A. J. G. Bento, N. Lupa, M. Megan, and C. Silva, Integral conditions for nonuniform µ-dichotomy, arXiv6v1 [math.DS], (2014)
  4. [4] L. Biriş and M. Megan, On a concept of exponential dichotomy for cocycles of linear operators in Banach spaces, accepted for publication in B. Math. Soc. Sci. Math.
  5. [5] R. Datko, Uniform Asymptotic Stability of Evolutionary Processes in a Banach Space, SIAM J. Math. Anal., 3, (1972), 428-44510.1137/0503042
  6. [6] M. I. Kovacs, M. Megan, and C. L. Mihiţ, On (h, k)-dichotomy and (h, k)-trichotomy of noninvertible evolution operators in Banach spaces, Analele Universităţii de Vest din Timişoara, Seria Matematică-Informatică, LII, (2014), 127-14310.2478/awutm-2014-0015
  7. [7] N. Lupa and M. Megan, Exponential dichotomies of evolution operators in Banach spaces, Monatsh. Math., 174, (2014), 265-28410.1007/s00605-013-0517-y
  8. [8] M. Megan, On (h, k)-dichotomy of evolution operators in Banach spaces, Dynam. Systems Appl., 5, (1996), 189-196
  9. [9] M. Megan and M. G. Babuţia, Nonuniform exponential dichotomy for noninvertible evolution operators in Banach spaces, accepted for publication in An. Stiint. U. Al. I-Mat
  10. [10] M. Megan, B. Sasu, and A. L. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integr. Equat. Oper. Th., 44, (2002), 71-7810.1007/BF01197861
  11. [11] M. Megan and C. Stoica, Concepts of dichotomy for skew-evolution semiflows in Banach spaces, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2, (2010), 125-140
  12. [12] N. Van Minh, F. Räbiger, and R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half-line, Integ. Equ. Oper. Th., 32, (1998), 332-35310.1007/BF01203774
  13. [13] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32, (1930), 703-72810.1007/BF01194662
  14. [14] I. L. Popa, M. Megan, and T. Ceauşu, Nonuniform exponential dichotomies in terms of Lyapunov functions for noninvertible linear discrete-time systems, The Scientific World Journal, (2013), Article ID 90102610.1155/2013/901026383639824307885
  15. [15] L. Zhou, K. Lu, and W. Zhang, Roughness of temperated exponential dichotomies for infinite-dimensional random difference equations, J. Differential Equations, 254, (2013), 4024-404610.1016/j.jde.2013.02.007
DOI: https://doi.org/10.1515/awutm-2015-0019 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 121 - 131
Submitted on: Nov 1, 2015
Accepted on: Dec 15, 2015
Published on: Apr 9, 2016
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 Claudia Luminiţa Mihiţ, Codruţa Simona Stoica, Mihail Megan, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.