Have a personal or library account? Click to login
Local convergence radius for the Mann-type iteration Cover

References

  1. [1] I.K.Argyros, Concerning the radii of convergence for a certain class of Newton-like methods, J. Korea Math. Soc. Educ. Ser.B: Pure Appl. Math., 15, (2008), 47-55
  2. [2] I.K.Argyros, Concerning the ”terra incognita” between convergence regions of two Newton methods, Nonlinear Analysis, 62, (2005), 179-19410.1016/j.na.2005.02.113
  3. [3] O.P.Ferreira, Local convergence of Newtons method in Banach space from the viewpoint of the majorant principle, IMA J. of Numer. Anal., 29, (2009), 746-75910.1093/imanum/drn036
  4. [4] O.P.Ferreira, Local convergence of Newton’s method under a majorant condition in Riemannian manifolds, IMA Journal of Numerical Analysis, 32, (2012), 1696-171310.1093/imanum/drr048
  5. [5] O.P.Ferreira M.L.N.Goncalves, Local convergence analysis of inexact Newton-like methods under majorant condition, arXiv:0807.3903v1 [math.NA] 24 Jul, (2008)10.1007/s10589-009-9249-2
  6. [6] M. A. Hernández-Verón N. Romero, On the Local Convergence of a Third Order Family of Iterative Processes, Algorithms, 8, (2015), 1121-112810.3390/a8041121
  7. [7] L.B.Rall, A note on the convergence of Newton method, SIAM J. Numer. Anal., 11 No. 1, (1974), 34-3610.1137/0711004
  8. [8] H.Ren, On the local convergence of a deformed Newton’s method under Argyros-type condition, J. Math. Anal. Appl., 321, (2006), 396-40410.1016/j.jmaa.2005.08.057
  9. [9] W.C.Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Polish Acad. Sci. Banach Center Publ., 3, (197), 129-14210.4064/-3-1-129-142
  10. [10] J.F.Traub H.Wozniakowski, Convergence and Complexity of Newton Iteration for Operator Equations, Journal of the Association for Computing Machinery, 26 No 2, (1979), 250-25810.1145/322123.322130
  11. [11] S.Smale, Complexity theory and numerical analysis, Acta Numer., 6, (1997), 523-55110.1017/S0962492900002774
  12. [12] X.Wang, Convergence of Newton’s method and uniquenees of the solution of equations in Banach space, IMA J.on Numer. Anal., 20, (2000), 123-13410.1093/imanum/20.1.123
DOI: https://doi.org/10.1515/awutm-2015-0018 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 109 - 120
Submitted on: Dec 10, 2015
Accepted on: Mar 18, 2016
Published on: Apr 9, 2016
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 Ştefan Măruşter, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.