Have a personal or library account? Click to login
The fundamental group of the orbit space Cover

References

  1. [1] M. A. Armstrong, On the fundamental group of an orbit space, Mathematical Proceedings of the Cambridge Philosophical Society, 61, (1965), 639-64610.1017/S0305004100038974
  2. [2] M. A. Armstrong, The fundamental group of the orbit space of a discontinuous group, Mathematical Proceedings of the Cambridge Philosophical Society, 64, (1968), 299-30110.1017/S0305004100042845
  3. [3] M. A. Armstrong, Calculating the fundamental group of an orbit space, Proc. Amer. Math. Soc., 84, (1982), 267-27110.1090/S0002-9939-1982-0637181-X
  4. [4] J. S. Calcut, R. E. Gompf, and J. D. McCarthyc, On fundamental groups of quotient spaces, Topology and its Applications, 159, (2012), 32233010.1016/j.topol.2011.09.038
  5. [5] J.S. Calcut, R.E. Gompf, and J.D. McCarthy, Quotient maps with connected fibers and the fundamental group, (2009)
  6. [6] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique, Die Grundlehren der mathematischen Wissenschaften, 166, (1971)
  7. [7] E. D. Farjoun, Fundamental group of homotopy colimits, Advances in Mathematics, 182, (2004), 12710.1016/S0001-8708(03)00072-0
  8. [8] M. Krzysztof, Analysis Part II Integration, Distributions, Holomorphic Functions, Tensor and Harmonic Analysis, PWNReidel, WarszawaDordrecht, 1980
  9. [9] C. Bonatti, H. Hattab, and E. Salhi, Quasi-orbits spaces associated to T0-spaces, Fund. Math., 211, (2011), 267-29110.4064/fm211-3-4
  10. [10] A. El Kacimi, H. Hattab, and E. Salhi, Remarque sur certains groupes d’homéomorphismes d’espaces métriques, JP Jour. Geometry and Topology, 4, (2004), 225-242
  11. [11] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002
  12. [12] H. Hattab, Flows of locally finite graphs
  13. [13] H. Hattab, A model of quotient spaces
  14. [14] H. Hattab and E. Salhi, Groups of homeomorphisms and spectral topology, Topology Proceedings, 28, (2004), 503-526
  15. [15] C. Kosniowski, A First Course in Algebraic Topology, 198010.1017/CBO9780511569296
  16. [16] F. Rhodes, On the Fundamental Group of a Transformation Group, Proc. London Math. Soc., 3-16, (1966), 635-65010.1112/plms/s3-16.1.635
  17. [17] S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc., 8, (1957), 60461010.1090/S0002-9939-1957-0087106-9
  18. [18] B. de Smit, The fundamental group of the Hawaiian earring is not free, Internat. J. Algebra Comput., 2, (1992), 3337
DOI: https://doi.org/10.1515/awutm-2015-0015 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 73 - 79
Submitted on: Nov 4, 2015
Accepted on: Jan 22, 2016
Published on: Apr 9, 2016
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 Hawete Hattab, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.