Have a personal or library account? Click to login
On the Ψ-Conditional Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations Cover

On the Ψ-Conditional Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations

Open Access
|Apr 2016

References

  1. [1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, Inc., New York, 1960
  2. [2] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston, 1965
  3. [3] A. Diamandescu, On the Ψ conditional stability of the solutions of a nonlinear Volterra integro-differential system, Proceedings of the National Conference on Mathematical Analysis and Applications, Timişoara, 12-13 Dec. 2000, 89-106
  4. [4] A. Diamandescu, On the Ψ−Instability of a Nonlinear Volterra Integro-Differential System, Bull. Math. Soc. Sc. Math. Roumanie, Tome 46(94), (2003), 103-119
  5. [5] A. Diamandescu, On the Ψ−conditional asymptotic stability of the solutions of a nonlinear Volterra integro-differential system, Electronic Journal of Differential Equations, (2007), 1-13
  6. [6] A. Diamandescu, On the Ψ−instability of nonlinear Lyapunov matrix differential equations, Analele Universităţii de Vest, Timişoara, Seria Matematică - Informatică, XLIX, (2011), 21-37
  7. [7] A. Diamandescu, On Ψ−stability of a nonlinear Lyapunov matrix differential equations, Electronic Journal of Qualitative Theory Differential Equations, (2009), 1-1810.14232/ejqtde.2009.1.54
  8. [8] A. Diamandescu, On Ψ−asymptotic stability of nonlinear Lyapunov matrix differential equations, Analele Universităţii de Vest, Timişoara, Seria Matematică - Informatică, L, (2012), 3-2510.2478/v10324-012-0001-8
  9. [9] A. Diamandescu, On the Ψ−strong stability of nonlinear Lyapunov matrix differential equations, Math. Slovaca, 65, (2015), 555–57210.1515/ms-2015-0040
  10. [10] A. Diamandescu, On the Ψ−Exponential Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations, Analele Universităţii de Vest, Timişoara, Seria Matematică - Informatică, LI, (2013), 07-2810.2478/awutm-2013-0012
  11. [11] A. Diamandescu, On the Ψ-Conditional Stability of Nonlinear Lyapunov Matrix Differential Equations, Analele Universităţii de Vest, Timişoara, Seria Matematică - Informatică, LII, (2014), 41-6410.2478/awutm-2014-0004
  12. [12] M.S.N. Murty and G. Suresh Kumar, On dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, J. Korean Math. Soc., 45, (2008), 1361-137810.4134/JKMS.2008.45.5.1361
  13. [13] M.S.N. Murty and G. Suresh Kumar, On Ψ−boundedness and Ψ−stability of matrix Lyapunov systems, J. Appl. Math. Comput, 26, (2008), 67-8410.1007/s12190-007-0007-2
  14. [14] M.S.N. Murty, B. V. Apparao, and G. Suresh Kumar, Controllability, observability and realizability of matrix Lyapunov systems, Bull. Korean math. Soc., 43, (2006), 149 - 15910.4134/BKMS.2006.43.1.149
  15. [15] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32, (1930), 703-72810.1007/BF01194662
DOI: https://doi.org/10.1515/awutm-2015-0013 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 29 - 58
Submitted on: Nov 30, 2015
Accepted on: Dec 30, 2015
Published on: Apr 9, 2016
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2016 Aurel Diamandescu, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.