Have a personal or library account? Click to login
Random fixed point theorems for Ciric quasi contraction in cone random metric spaces Cover

Random fixed point theorems for Ciric quasi contraction in cone random metric spaces

By: G. S. Saluja  
Open Access
|Dec 2015

References

  1. [1] M. Abbas and G. Jungck, Common fixed point results for non commuting map- pings without continuity in cone metric spaces, J. Math. Anal. Appl., 341, (2008), 416-42010.1016/j.jmaa.2007.09.070
  2. [2] M. Arshad and P. Vetro A. Azam, On Edelstein type multivalued random op- erators, Hacet. J. Math. Stat., 42(3), (2013), 223-229
  3. [3] M. Arshad and A. Shoaib, Fixed points of multivalued mappings in fuzzy metric spaces, Proceedings of the world congress on engineering, July 4-6, (2012), p.664-664
  4. [4] I. Beg, Random fixed points of random operators satisfying semicontractivity con- ditions, Mathematics Japonica, 46(1), (1997), 151-155
  5. [5] I. Beg, Approximation of random fixed points in normed spaces, Nonlinear Anal., 51(8), (2002), 1363-137210.1016/S0362-546X(01)00902-6
  6. [6] I. Beg and M. Abbas, Equivalence and stability of random fixed point iterative procedures, J. Appl. Math. Stoch. Anal., (2006), (2006), 1910.1155/JAMSA/2006/23297
  7. [7] I. Beg and M. Abbas, Iterative procedures for solutions of random operator equa- tions in Banach spaces, J. Math. Anal. Appl., 315(1), (2006), 181-20110.1016/j.jmaa.2005.05.073
  8. [8] A.T. Bharucha-Reid, Random Integral equations Mathematics in Science and En- gineering, J. Math. Anal. Appl., 96, (1972), .
  9. [9] A.T. Bharucha-Reid, Fixed point theorems in Probabilistic analysis, Bull. Amer. Math. Soc., 82(5), (1976), 641-65710.1090/S0002-9904-1976-14091-8
  10. [10] L.B. Ciric, A generalization of Banach principle, Proc. Amer. Math. Soc., 45, (1974), 727-73010.2307/2040075
  11. [11] S.K. Chatterjee, Fixed point theorems compactes, Rend. Acad. Bulgare Sci., 25, (1972), 727-730
  12. [12] O. Hanš, Reduzierende zufallige transformationen, Czech. Math. J., 7(82), (1957), 154-15810.21136/CMJ.1957.100238
  13. [13] O. Hanš, Random operator equations, Proceeding of the 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, California, II, (1961), 185-202
  14. [14] C.J. Himmelberg, Measurable relations, Fund. Math., 87, (1975), 53-7210.4064/fm-87-1-53-72
  15. [15] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2), (2007), 1468-147610.1016/j.jmaa.2005.03.087
  16. [16] D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341, (2008), 876-88210.1016/j.jmaa.2007.10.065
  17. [17] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67(2), (1979), 261-27310.1016/0022-247X(79)90023-4
  18. [18] R. Kannan, Some results on fixed point theorems, Bull. Cal. Math. Soc., 60, (1969), 71-78
  19. [19] A.D. Singh and Vanita Ben Dhagat Smriti Mehta, Fixed point theorems for weak contraction in cone random metric spaces, Bull. Cal. Math. Soc., 103(4), (2011), 303-310
  20. [20] N.S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc., 97(3), (1986), 507-51410.1090/S0002-9939-1986-0840638-3
  21. [21] N.S. Papageorgiou, On measurable multifunctions with stochastic domain, J. Aus- tra. Math. Soc. Series A, 45(2), (1988), 204-21610.1017/S1446788700030111
  22. [22] R. Penaloza, A characterization of renegotiation proof contracts via random fixed points in Banach spaces, working paper 269, Department of Economics, University of Brasilia, Brasilia, December, (2002)
  23. [23] A. Petrusel, Generalized multivalued contractions, Nonlinear Anal. (TMA), 47(1), (2001), 649-65910.1016/S0362-546X(01)00209-7
  24. [24] G. Petrusel and A. Petrusel, Multivalued contractions of Feng-Liu type in com- plete gauge spaces, Carpth. J. Math. Anal. Appl., 24, (2008), 392-396
  25. [25] Sh. Rezapour and R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings", J. Math. Anal. Appl., 345(2), (2008), 719-72410.1016/j.jmaa.2008.04.049
  26. [26] V.M. Sehgal and S.P. Singh, On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc., 95(1), (1985), 91-9410.1090/S0002-9939-1985-0796453-1
  27. [27] P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo (2), 56(3), (2007), 464-46810.1007/BF03032097
  28. [28] D.H. Wagner, Survey of measurable selection theorem, SIAM J. Control Optim., 15(5), (1977), 859-90310.1137/0315056
  29. [29] P.P. Zabrejko, K-metric and K-normed linear spaces: survey, Collec. Math., 48(4-6), (1997), 825-859
  30. [30] T. Zamffirescu, Fixed point theorems in metric space, Arch. Math. (Basel), 23, (1972), 292-29810.1007/BF01304884
DOI: https://doi.org/10.1515/awutm-2015-0009 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 163 - 175
Submitted on: Jul 20, 2013
Accepted on: Mar 11, 2015
Published on: Dec 12, 2015
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 G. S. Saluja, published by West University of Timisoara
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.