[10] A. Brandst¨adt, V. B. Le, J. P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia, PL, 1999. ⇒254, 256, 266
[11] R. E. Burkard, P. L. Hammer, A note on Hamiltonian split graphs, J. Comb. Graph Theory, Series B, 28 (1980) 245-248. ⇒26510.1016/0095-8956(80)90069-6
[16] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms Third edition, The MIT Press/McGraw Hill, Cambridge/New York, 2009. ⇒275
[19] P. Erdős, M. S. Jacobson, J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi (Ed.), Graph Theory, Combinatorics and Applications, vol. 1, John Wiley and Sons, New York, 1991, 439-449. ⇒264
[22] S. Földes, P. Hammer, Split graphs, in (ed. E. Hoffman et al.) Proc. 8th South- Eastern Conf. Combinatorics, Graph Theory Comp. Congressus Num., XIX (1977) 311-315. ⇒254, 256, 263
[24] D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs with multiple edges, Canad. J. Math., 17 (1965) 166-177. ⇒253, 269, 27110.4153/CJM-1965-016-2
[27] R. J. Gould, M. S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi (Ed.), Combinatorics, Graph Theory and Algorithms, vol. 1, New Issues Press, Kalamazoo, Michigan, 1999, 451-460. ⇒261, 264
[31] M. Habib, A.Mamcarz, Colored modular and split decompositions of graphs with applications to trigraphs, in (ed. D. Kratsch and I. Todinca) Graph-Theoretic Concepts in Computer Science (40th International Workshop, WG 2014, Nouanle- Fuzelier, France, June 25-27, 2014). Series: Lecture Notes in Computer Science, 8747, Springer Verlag, Berlin, 2014, 263-274. ⇒26610.1007/978-3-319-12340-0_22
[32] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math., 10 (1962), 496-506. ⇒257, 25810.1137/0110037
[33] S. L. Hakimi, E. F. Schmeichel, Graphs and their degree sequences: A survey, in: Theory and Applications of Graphs, Lecture Notes in Math. 642, Springer- Verlag, Berlin 1978, 225-235. ⇒26110.1007/BFb0070380
[37] P. Heggerness, D. Kratsch, Linear-time certifying algorithms for recognizing split graphs and related graph classes, Nordic J. Comp., 14 (2007) 87-108. ⇒278
[39] A. P. Heinz, Total number of split graphs (chordal + chordal complement) on n vertices. In: (ed. N. J. A. Sloane): The On-Line Encyclopedia of the Integer Sequences. 2014. ⇒265
[41] P. Hell, S. Klein, F. Protti, L. Tito, On generalized split graphs, Electronic Notes Disc. Math., 7 (2001) 98-101. ⇒25510.1016/S1571-0653(04)00234-3
[48] A. Iványi, L. Lucz, T. F. M´ori, P. S´ot´er, On the Erdős-Gallai and Havel-Hakimi algorithms. Acta Univ. Sapientiae, Inform. 3, 2 (2011) 230-268. ⇒ 256, 259, 260, 262, 275
[50] A. E. Kézdy, J. Lehel, Degree sequences of graphs with prescribed clique size. In: Y. Alavi et. al. (eds.) Combinatorics, Graph Theory, and Algorithms, vol. 2., Michigan, New Issues Press, Kalamazoo, 1999, 535-544. ⇒260
[51] D. J. Kleitman, D. L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math., 6 (1973) 79-88. ⇒254, 257, 25810.1016/0012-365X(73)90037-X
[52] D. Kratsch, R. M. McConnell, K. Mehlhorn, J. P. Spinrad, Certifying algorithms for recognizing interval graphs and permutation graphs, SIAM J. Comput., 36, (2) (2006) 326-353. ⇒26610.1137/S0097539703437855
[57] J. S. Li, Z. X. Song, R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially pk-graphic sequences is true, Sci. China Ser. A, 41 (1998) 510-520. ⇒264
[58] F. Maffray, M. Preissmann, Linear recognition of pseudo-split graphs, Discrete Appl. Math. 52 (1994) 307-312. ⇒263, 27910.1016/0166-218X(94)00022-0
[63] P. M. Pardalos, J. Rappe, M. G. S. Resende, An exact parallel algorithm for the maximum clique problem, High Performance Algorithms and Software in Nonlinear Optimization, Applied Optimization, 24 (1998) 279-300. ⇒264
[68] A. R. Rao, The clique number of a graph with given degree sequence, in: A. R. Rao (Ed.) Proc. Symp. on Graph Theory, MacMillan and Co. Limited, India, ISI Lecture Notes Series, 4 (1979) 251-267. ⇒260
[69] A. R. Rao, A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences, Comb. Graph Theory, Proc. Symp. (Calcutta 1980), Lect. Notes Math. 885 (1981) 417-440. ⇒26010.1007/BFb0092288
[72] M. C. Schmidt, N. F. Samatova, K. Thomas, B.-H. Park, A scalable, parallel algorithm for maximal clique enumeration, J. Parallel Dist. Comp., 69, (4) (2009) 417-428. ⇒264
[73] P. S. Segundo, D. Rodríguez-Losada, A. Jim´enez, An exact bit-parallel algorithm for the maximum clique problem, Computers & Operations Res., 38, (2) (2011) 571-581. ⇒264
[74] N. J. A. Sloane, The number of degree-vectors for simple graphs. In (ed. N. J. A. Sloane): The On-Line Encyclopedia of the Integer Sequences. 2014, http://oeis.org/A004251 . ⇒260
[76] E. Tomita, A. Tanaka, H. Takahashi, The worst-case time complexity for generating all maximal cliques and computational experiments, Theoretical Computer Science, 363, (1) (2006) 28-42. ⇒264
[78] A. Tripathi, S. Venugopalan, D. B. West, A short constructive proof of the Erdős-Gallai characterization of graphic lists, Discrete Math., 310, (4) (2010) 843-844. ⇒258
[80] R. I. Tyshkevich, A. A. Chernyak, Yet another method of enumerating unmarked combinatorial objects, Mathematical Notes, 48, (6) (1990) 1239-1245 and (in Russian) Mat. Zametki, 48, (6) (1990) 98-105. ⇒264
[81] R. I. Tyshkevich, O. I. Melnikow, V. M. Kotov, On graphs and degree sequences: the canonical decomposition (in Russian), Kibernetica, 6 (1981) 5-8. ⇒263
[86] J.-H. Yin, A Rao-type characterization for a sequence to have a realization containing a split graph, Discrete Math., 311 (2011) 2485-2489. ⇒255, 256
[87] J.-H. Yin, A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially Sr,s-graphic, Czechoslovak Math. J., 62, (3) (2012) 863-867. ⇒255, 256, 262, 279
[88] J.-H. Yin, An extension of A. R. Rao’s characterization of potentially Km+1- graphic sequences, Discrete Appl. Math., 161, (7-8) (2013) 1118-1127. ⇒256, 262
[89] J.-H. Yin, A Rao-type characterization for a sequence to have a realization containing an arbitrary subgraph H, Acta Math. Sin., 30, (3) (2014) 389-394. ⇒ 262
[90] J.-H. Yin, Y.-S. Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, Discrete Math., 209 (2005) 218-227. ⇒ 264