Have a personal or library account? Click to login
Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative Cover

Local convergence of a multi-step high order method with divided differences under hypotheses on the first derivative

Open Access
|Jan 2018

References

  1. [1] Amat, Sergio, and Miguel A. Hernández, and Natalia Romero. “Semilocal convergence of a sixth order iterative method for quadratic equations.” Appl. Numer. Math. 62, no. 7 (2012): 833–841. Cited on 42.
  2. [2] Argyros, Ioannis K. Computational theory of iterative methods. Vol. 15 of Studies in Computational Mathematics. Amsterdam: Elsevier B. V., 2007. Cited on 42 and 45.
  3. [3] Argyros, Ioannis K. “A semilocal convergence analysis for directional Newton methods.” Math. Comp. 80, no. 273 (2011): 327–343. Cited on 42 and 45.
  4. [4] Argyros, Ioannis K., and Saïd Hilout. “Weaker conditions for the convergence of Newton’s method.” J. Complexity 28, no. 3 (2012): 364–387. Cited on 42 and 48.10.1016/j.jco.2011.12.003
  5. [5] Argyros, Ioannis K., and Saïd Hilout. Computational methods in nonlinear analysis. Efficient algorithms, fixed point theory and applications. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2013. Cited on 42.10.1142/8475
  6. [6] Cordero, Alicia, and Eulalia Martínez, and Juan R. Torregrosa. “Iterative methods of order four and five for systems of nonlinear equations.” J. Comput. Appl. Math. 231, no. 2 (2009): 541–551. Cited on 42 and 48.
  7. [7] Cordero, Alicia et al. “A modified Newton-Jarratt’s composition.” Numer. Algorithms 55, no. 1 (2010): 87–99. Cited on 42.
  8. [8] Cordero, Alicia, and Juan R. Torregrosa, and María P. Vassileva. “Increasing the order of convergence of iterative schemes for solving nonlinear systems.” J. Comput. Appl. Math. 252 (2013): 86–94. Cited on 42.
  9. [9] Ezquerro, J.A., and M.A. Hernández, and A.N. Romero. “Aproximación de soluciones de algunas ecuaciones integrales de Hammerstein mediante métodos iterativos tipo Newton.” In XXI Congreso de Ecuaciones Diferenciales y Aplicaciones, XI Congreso de Matemática Aplicada, Ciudad Real, 21-25 septiembre 2009, 1-8. Universidad de Castilla-La Mancha, 2009. Cited on 42.
  10. [10] Grau, Miquel, and José Luis Díaz-Barrero. “An improvement of the Euler-Chebyshev iterative method.” J. Math. Anal. Appl. 315, no. 1 (2006): 1–7. Cited on 42, 47 and 48.
  11. [11] Grau-Sánchez, Miquel, and Ángela Grau, and Miquel Noguera. “Ostrowski type methods for solving systems of nonlinear equations.” Appl. Math. Comput. 218, no. 6 (2011): 2377–2385. Cited on 42, 47 and 48.
  12. [12] Grau-Sánchez, Miquel, and Miquel Noguera, and Sergio Amat. “On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods.” J. Comput. Appl. Math. 237, no. 1 (2013): 363–372. Cited on 41, 42, 47 and 48.
  13. [13] Gutiérrez, José Manuel, and Ángel A. Magreñán, and Natalia Romero. “On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions.” Appl. Math. Comput. 221 (2013): 79–88. Cited on 42.
  14. [14] Kantorovich, Leonid V., and Gleb P. Akilov. Functional analysis. Second edition. Oxford-Elmsford, N.Y.: Pergamon Press, 1982. Cited on 42.
  15. [15] Magreñán, Ángel A. “Different anomalies in a Jarratt family of iterative root-finding methods.” Appl. Math. Comput. 233 (2014): 29–38. Cited on 42.
  16. [16] Magreñán, Ángel A. “A new tool to study real dynamics: the convergence plane.” Appl. Math. Comput. 248 (2014): 215–224. Cited on 42.
  17. [17] Petkovi¢, Miodrag S.et al. Multipoint methods for solving nonlinear equations. Amsterdam: Elsevier/Academic Press, 2013. Cited on 42.
  18. [18] Ren, Hongmin, and Ioannis K. Argyros. “Improved local analysis for a certain class of iterative methods with cubic convergence.” Numer. Algorithms 59, no. 4 (2012): 505–521. Cited on 42.
  19. [19] Rheinboldt, Werner C. “An adaptive continuation process for solving systems of nonlinear equations.” In Mathematical models and numerical methods, 129–142. Warsaw: Banach Center Publ. 3, 1978. Cited on 42.10.4064/-3-1-129-142
  20. [20] Sharma, Janak Raj, and Puneet Gupta. “An efficient fifth order method for solving systems of nonlinear equations.” Comput. Math. Appl. 67, no. 3 (2014): 591–601. Cited on 42 and 48.
  21. [21] Traub, Joseph F. Iterative methods for the solution of equations. New-York: AMS Chelsea Publishing, 1982. Cited on 42.
  22. [22] Weerakoon, S., and T.G.I. Fernando. “A variant of Newton’s method with accelerated third-order convergence.” Appl. Math. Lett. 13, no. 8 (2000): 87–93. Cited on 42 and 47.
DOI: https://doi.org/10.1515/aupcsm-2017-0003 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 41 - 50
Submitted on: Feb 2, 2017
Accepted on: Jun 8, 2017
Published on: Jan 27, 2018
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Ioannis K. Argyros, Santhosh George, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.