Have a personal or library account? Click to login
Fekete-Szegö inequalities associated with kth root transformation based on quasi-subordination Cover

Fekete-Szegö inequalities associated with kth root transformation based on quasi-subordination

Open Access
|Jan 2018

References

  1. [1] Haji Mohd, Maisarah, and Maslina Darus. “Fekete-Szegő problems for quasi-subordination classes.” Abstr. Appl. Anal. 2012: Art. ID 192956, 14 pp. Cited on 7, 8, 9, 12 and 13.
  2. [2] Robertson, Malcolm S. “Quasi-subordination and coefficient conjectures.” Bull. Amer. Math. Soc. 76 (1970): 1–9. Cited on 8.10.1090/S0002-9904-1970-12356-4
  3. [3] El-Ashwah, Rabha, and Stanisława Kanas. “Fekete-Szegö inequalities for quasi-subordination functions classes of complex order.” Kyungpook Math. J. 55, no. 3 (2015): 679–688. Cited on 8 and 9.10.5666/KMJ.2015.55.3.679
  4. [4] Ravichandran, V., Yasar Polatoglu, Metin Bolcal, and Arzu Sen. “Certain subclasses of starlike and convex functions of complex order.” Hacet. J. Math. Stat. 34 (2005): 9–15. Cited on 8.
  5. [5] Ma, Wan Cang, and David Minda. “A unified treatment of some special classes of univalent functions.” In Proceedings of the Conference on Complex Analysis (Tianjin, 1992). Vol I of Conf. Proc. Lecture Notes Anal., 157–169. Cambridge, MA: Int. Press, 1994. Cited on 8.
  6. [6] Gurusamy, Palpandy, and Janusz Sokół, and Srikandan Sivasubramanian. “The Fekete-Szegö functional associated with k-th root transformation using quasi-subordination.” C. R. Math. Acad. Sci. Paris 353, no. 7 (2015): 617–622. Cited on 9, 12 and 13.
  7. [7] Goyal, Som Prakash, and Onkar Singh. “Fekete-Szegö problems and coefficient estimates of quasi-subordination classes.” J. Rajasthan Acad. Phys. Sci. 13, no. 2 (2014): 133–142. Cited on 9.
  8. [8] Keerthi, Bhaskara Srutha, and P. Lokesh. “Fekete-Szegö problem for certain subclass of analytic univalent function using quasi-subordination.” Math. AEterna 3, no. 3-4 (2013): 193–199. Cited on 9 and 13.
  9. [9] Keogh, F.R., and Edward P. Merkes. “A coefficient inequality for certain classes of analytic functions.” Proc. Amer. Math. Soc. 20 (1969): 8–12. Cited on 9 and 10.
  10. [10] Duren, Peter L. Univalent functions. Vol. 259 of Grundlehren der Mathematischen Wissenschaften. New York: Springer-Verlag, 1983. Cited on 10.
  11. [11] Magesh, Nanjundan, and V.K. Balaji, and C. Abirami. “Fekete-Szegö inequalities for certain subclasses of starlike and convex functions of complex order associated with quasi-subordination.” Khayyam J. Math. 2, no. 2 (2016): 112–119. Cited on 13.
DOI: https://doi.org/10.1515/aupcsm-2017-0001 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 7 - 15
Submitted on: Jan 25, 2017
Accepted on: Apr 6, 2017
Published on: Jan 27, 2018
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Nanjundan Magesh, Jagadeesan Yamini, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.