Have a personal or library account? Click to login
On the superstability of the cosine and sine type functional equations Cover

On the superstability of the cosine and sine type functional equations

Open Access
|Dec 2016

References

  1. [1] Badora, Roman. “On the stability of the cosine functional equation.” Rocznik Nauk.-Dydakt. Prace Mat. 15 (1998): 5–14. Cited on 113.
  2. [2] Badora, Roman, and Roman Ger. “On some trigonometric functional inequalities.” In Functional equations-results and advances. Vol 3 of Adv. Math. (Dordr.), 3–15, Dordrecht, Kluwer Acad. Publ., 2002. Cited on 113.
  3. [3] Baker, John A. “The stability of the cosine equation.” Proc. Amer. Math. Soc. 80, no. 3 (1980): 411–416. Cited on 113.
  4. [4] Baker, John, and John W. Lawrence, and Frank A. Zorzitto. “The stability of the equation f(x+y) = f(x)f(y).” Proc. Amer. Math. Soc. 74, no. 2 (1979): 242–246. Cited on 113.
  5. [5] Hyers, Donald H. “On the stability of the linear functional equation.” Proc. Nat. Acad. Sci. U.S.A. 27, (1941): 222–224. Cited on 113.
  6. [6] Kim, Gwang Hui. “On the stability of trigonometric functional equations.” Adv. Difference Equ. 2007: Art. ID 90405. Cited on 114.
  7. [7] Kim, Gwang Hui. “On the stability of the Pexiderized trigonometric functional equation.” Appl. Math. Comput. 203, no. 1 (2008): 99–105. Cited on 114.
  8. [8] Perkins, Allison M., and Prasanna K. Sahoo. “On two functional equations with involution on groups related to sine and cosine functions.” Aequationes Math. 89, no. 5 (2015): 1251–1263. Cited on 114.
  9. [9] Roukbi, Ahmed, and Driss Zeglami, and Samir Kabbaj. “Hyers-Ulam stability of Wilson’s functional equation.” J. Math. Sci. Adv. Appl. 22 (2013): 19–26. Cited on 117.
  10. [10] Stetkær, Henrik. “Van Vleck’s functional equation for the sine.” Aequationes Math. 90, no. 1 (2016): 25–34. Cited on 114.
  11. [11] Stetkær, Henrik. “Kannappan’s functional equation on semigroups with involution.” Semigroup Forum (2015), doi: 10.1007/s00233-015-9756-7. Cited on 114.
  12. [12] Ulam, Stanisław M. Problems in modern mathematics. New York: John Wiley & Sons, Inc., 1964. Cited on 113.
  13. [13] Van Vleck, Edward B. “A functional equation for the sine.” Ann. of Math. (2) 11, no. 4 (1910): 161–165. Cited on 114.
  14. [14] Zeglami, Driss, and Samir Kabbaj. “On the superstability of trigonometric type functional equations.” British Journal of Mathematics & Computer Science 4, no. 8 (2014): 1146–1155. Cited on 120.
DOI: https://doi.org/10.1515/aupcsm-2016-0010 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 113 - 121
Submitted on: May 11, 2016
Accepted on: Nov 9, 2016
Published on: Dec 23, 2016
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Fouad Lehlou, Mohammed Moussa, Ahmed Roukbi, Samir Kabbaj, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.