Have a personal or library account? Click to login
Properties of two variables Toeplitz type operators Cover

References

  1. [1] Douglas, Ronald G. “On the operator equation S*XT = X and related topics.” Acta Sci. Math. (Szeged) 30 (1969): 19–32. Cited on 97 and 102.
  2. [2] Halmos, Paul R. Introduction to Hilbert Space and the theory of Spectral Multiplicity. New York, N. Y.: Chelsea Publishing Company, 1951. Cited on 102.
  3. [3] Jewell, Nicholas P., and Arthur R. Lubin. “Commuting weighted shifts and analytic function theory in several variables.” J. Operator Theory 1, no. 2 (1979): 207–223. Cited on 104.
  4. [4] Kosiek, Marek. Functional calculus and common invariant subspaces. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego, 2001. Cited on 102.
  5. [5] Kosiek, Marek, and Marek Ptak. “Reflexivity of N-tuples of contractions with rich joint left essential spectrum.” Integral Equations Operator Theory 13, no. 3 (1990): 395–420. Cited on 102.
  6. [6] Mancera, Carmen H., and Pedro J. Paúl. “Remarks, examples and spectral properties of generalized Toeplitz operators.” Acta Sci. Math. (Szeged) 66, no. 3-4 (2000): 737–753. Cited on 97.
  7. [7] Mlak, Włodzimierz. Wstęp do teorii przestrzeni Hilberta. Warszawa: PWN, 1970. Cited on 104.
  8. [8] Szőkefalvi-Nagy, Béla, and Ciprian Foiaş. Harmonic analysis of operators on Hilbert space. Amsterdam-London: North-Holland Publishing Co., 1970. Cited on 98.
  9. [9] Ptak, Marek. “On the reflexivity of multigenerator algebras.” Dissertationes Math. 378 (1998): 1–61. Cited on 98.
  10. [10] Ptak, Marek. “Two variables Toeplitz type operators.” Acta Sci. Math. (Szeged) 71, no. 1-2 (2005): 353–362. Cited on 98, 99, 100, 101 and 104.
  11. [11] Pták, Vlastimil, and Pavla Vrbová. “Operators of Toeplitz and Hankel type.” Acta Sci. Math. (Szeged) 52, no. 1-2 (1988): 117–140. Cited on 97.
  12. [12] Słociński, Marek. “Isometric dilation of doubly commuting contractions and related models.” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25, no. 12 (1977): 1233–1242. Cited on 98 and 99.
  13. [13] Słociński, Marek. “On the Wold-type decomposition of a pair of commuting isometries.” Ann. Polon. Math. 37, no. 3 (1980): 255–262. Cited on 98.
DOI: https://doi.org/10.1515/aupcsm-2016-0008 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 97 - 106
Submitted on: May 23, 2016
Accepted on: Oct 14, 2016
Published on: Dec 23, 2016
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Elżbieta Król-Klimkowska, Marek Ptak, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.