Have a personal or library account? Click to login
An integro-differential inequality related to the smallest positive eigenvalue of p(x)-Laplacian Dirichlet problem Cover

An integro-differential inequality related to the smallest positive eigenvalue of p(x)-Laplacian Dirichlet problem

Open Access
|Dec 2016

References

  1. [1] Ashraf, Usman, and Vakhtang Kokilashvili, and Alexander Meskhi. “Weight characterization of the trace inequality for the generalized Riemann-Liouville transform in Lp(x) spaces.” Math. Inequal. Appl. 13, no. 1 (2010): 63-81. Cited on 27.
  2. [2] Bodzioch, Mariusz, and Mikhail Borsuk. “On the degenerate oblique derivative problem for elliptic second-order equation in a domain with boundary conical point.” Complex Var. Elliptic Equ. 59, no. 3 (2014): 324-354. Cited on 28.
  3. [3] Borsuk, Mikhail, and Vladimir Kondratiev. “Elliptic boundary value problems of second order in piecewise smooth domains.” Vol 69 of North-Holland Mathematical Library. Amsterdam: Elsevier Science B.V., 2006. Cited on 28.
  4. [4] Borsuk, Mikhail V., and Damian Wiśniewski. “Boundary value problems for quasilinear elliptic second order equations in unbounded cone-like domains.” Cent. Eur. J. Math. 10, no. 6 (2012): 2051-2072. Cited on 28 and 34.
  5. [5] Chen, Yunmei, and Stacey Levine, and Murali Rao. “Variable exponent, linear growth functionals in image processing.” SIAM J. Appl. Math. 66 (2006): 1383-1406. Cited on 27.
  6. [6] Diening, Lars. “Theorical and numerical results for electrorheological fluids.” Ph.D. thesis. University of Freiburg, 2002. Cited on 27.
  7. [7] Diening, Lars, and Petteri Harjulehto, and Peter Hästö, and Michael Růžička. “Lebesgue and Sobolev spaces with variable exponents.” Lecture Notes in Mathematics 2017. Heidelberg: Springer, 2011. Cited on 27.
  8. [8] Fan, Xianling. “Eigenvalues of the p(x)-Laplacian Neumann problems.” Nonlinear Anal. 67, no. 10 (2007): 2982–2992. Cited on 28.
  9. [9] Fan, Xianling, and Qihu Zhang, and Dun Zhao. “Eigenvalues of p(x)-Laplacian Dirichlet problem.” J. Math. Anal. Appl. 302, no. 2 (2005): 306-317. Cited on 27 and 30.
  10. [10] Fan, Xianling, and Dun Zhao. “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω).” J. Math. Anal. Appl. 263, no. 2 (2001): 424-446. Cited on 27.
  11. [11] Guven, Ali, and Daniyal M. Israfilov. “Trigonometric approximation in generalized Lebesgue spaces Lp(x).” J. Math. Inequal. 4, no. 2 (2010): 285-299. Cited on 27.
  12. [12] Harman, Aziz. “On necessary and sufficient conditions for variable exponent Hardy inequality.” Math. Inequal. Appl. 17, no. 1 (2014): 113-119. Cited on 27.
  13. [13] Kováčik, Ondrej, and Jiří Rákosník. “On spaces Lp(x) and Wk,p(x).” Czechoslovak Math. J. 41(116), no. 4, (1991): 592-618. Cited on 27.
  14. [14] Liu, Wulong and Peihao Zhao. “Existence of positive solutions for p(x)-Laplacian equations in unbounded domains.” Nonlinear Anal. 69, no. 10 (2008): 3358-3371. Cited on 27.
  15. [15] Mihăilescu, Mihai, and Vicenţiu Rădulescu, and Denisa Stancu-Dumitru. “A Caffarelli-Kohn-Nirenberg-type inequality with variable exponent and applications to PDEs.” Complex Var. Elliptic Equ. 56, no. 7-9, (2011): 659-669. Cited on 30.
  16. [16] Růžička, Michael. “Electrorheological fluids: modeling and mathematical theory.” Lecture Notes in Mathematics 1748. Berlin: Springer-Verlag, 2000. Cited on 27.
  17. [17] Yao, Fengping. “Local gradient estimates for the p(x)-Laplacian elliptic equations.” Math. Inequal. Appl. 17, no. 1 (2014): 259–268. Cited on 27.
  18. [18] Wiśniewski, Damian. “Boundary value problems for a second-order elliptic equation in unbounded domains.” Ann. Univ. Paedagog. Crac. Stud. Math. 9 (2010): 87-122. Cited on 28.
DOI: https://doi.org/10.1515/aupcsm-2016-0003 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 27 - 36
Submitted on: Feb 29, 2016
Accepted on: Jun 22, 2016
Published on: Dec 23, 2016
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Damian Wiśniewski, Mariusz Bodzioch, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.