Have a personal or library account? Click to login
On the superstability of generalized d’Alembert harmonic functions Cover
Open Access
|Dec 2016

Abstract

The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) $$f(x + y + z) + f(x + y + \sigma (z)) + f(x + \sigma (y) + z) + f(\sigma (x) + y + z) = 4f(x)f(y)f(z)$$ for all x, y, zG, where G is an abelian group and σ : GG is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.

DOI: https://doi.org/10.1515/aupcsm-2016-0001 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 5 - 13
Submitted on: Oct 21, 2015
Accepted on: Dec 8, 2015
Published on: Dec 23, 2016
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Iz-iddine EL-Fassi, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.