Have a personal or library account? Click to login
The class Bp for weighted generalized Fourier transform inequalities Cover
Open Access
|Dec 2015

References

  1. [1] C. Abdelkefi, J.Ph. Anker, F. Sassi, M. Sifi, Besov-type spaces on Rd and integrability for the Dunkl transform, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 019, 15pp. Cited on 121 and 132.
  2. [2] C. Abdelkefi, Weighted function spaces and Dunkl transform, Mediterr. J. Math. 9 (2012), no. 3, 499-513. Cited on 121.
  3. [3] W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1897-1905. Cited on 132.
  4. [4] J.J. Benedetto, H.P. Heinig, Weighted Fourier inequalities: new proofs and generalizations, J. Fourier Anal. Appl. 9 (2003), no. 1, 1-37. Cited on 123 and 130.
  5. [5] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics 129, Academic Press, Inc., Boston, MA, 1988. Cited on 126 and 127.
  6. [6] M.F.E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147-162. Cited on 121.
  7. [7] C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167-183. Cited on 121.
  8. [8] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227. Cited on 121.
  9. [9] G.H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314-317. Cited on 122.
  10. [10] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2d ed., Cambridge University Press, 1952. Cited on 127.
  11. [11] H.P. Heinig, Weighted norm inequalities for classes of operators, Indiana Univ. Math. J. 33 (1984), no. 4, 573-582. Cited on 127.
  12. [12] M. Jr. Jodeit, A. Torchinsky, Inequalities for Fourier transforms, Studia Math. 37 (1970/71), 245-276. Cited on 126.
  13. [13] V.G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer- Verlag, Berlin, 1985. Cited on 122.
  14. [14] M. Rösler, M. Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998), no. 4, 575-643. Cited on 121, 123 and 125.
  15. [15] M. Rösler, Dunkl operators: theory and applications, Orthogonal polynomials and special functions (Leuven, 2002), 93-135, Lecture Notes in Math., 1817, Springer, Berlin, 2003. Cited on 123.
  16. [16] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), no. 2, 145-158. Cited on 122 and 126.
  17. [17] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis III, Princeton University Press, Princeton, NJ, 1993. Cited on 122.
DOI: https://doi.org/10.1515/aupcsm-2015-0009 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 121 - 133
Submitted on: Jan 22, 2015
Published on: Dec 30, 2015
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Chokri Abdelkefi, Mongi Rachdi, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.