Have a personal or library account? Click to login
Stability of a generalization of the Fréchet functional equation Cover
By: Renata Malejki  
Open Access
|Dec 2015

References

  1. [1] C. Alsina, J. Sikorska, M.S. Tomás, Norm derivatives and characterizations of inner product spaces, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. Cited on 70.
  2. [2] A. Bahyrycz, J. Brzdęk, M. Piszczek, J. Sikorska, Hyperstability of the Fréchet equation and a characterization of inner product spaces, J. Funct. Spaces Appl. 2013, Art. ID 496361, 6 pp. Cited on 69, 70 and 71.
  3. [3] N. Brillouët-Belluot, J. Brzdęk, K. Ciepliński, On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp. Cited on 71 and 76.
  4. [4] J. Brzdęk, Remarks on hyperstability of the Cauchy functional equation, Aequationes Math. 86 (2013), no. 3, 255-267. Cited on 71.
  5. [5] J. Brzdęk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 141 (2013), no. 1-2, 58-67. Cited on 71 and 76.
  6. [6] J. Brzdęk, J. Chudziak, Z. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), no. 17, 6728-6732. Cited on 71.
  7. [7] J. Brzdęk, K. Ciepliński, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011), no. 18, 6861-6867. Cited on 71.
  8. [8] M. Chudziak, On solutions and stability of functional equations connected to the Popoviciu inequality, Ph.D. Thesis (in Polish), Pedagogical University of Cracow (Poland), Cracow 2012. Cited on 71.
  9. [9] L. Cădariu, L. Găvruta, P. Găvruta, Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal. 2012, Art. ID 712743, 10 pp. Cited on 71.
  10. [10] S.S. Dragomir, Some characterizations of inner product spaces and applications, Studia Univ. Babes-Bolyai Math. 34 (1989), no. 1, 50-55. Cited on 70.
  11. [11] W. Fechner, On the Hyers-Ulam stability of functional equations connected with additive and quadratic mappings, J. Math. Anal. Appl. 322 (2006), no. 2, 774-786. Cited on 71.
  12. [12] M. Fréchet, Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert, Ann. of Math. (2) 36 (1935), no. 3, 705-718. Cited on 70.
  13. [13] E. Gselmann, Hyperstability of a functional equation, Acta Math. Hungar. 124 (2009), no. 1-2, 179-188. Cited on 71.
  14. [14] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables. Progress in Nonlinear Differential Equations and their Applications, 34. Birkhäuser Boston, Inc., Boston, MA, 1998. Cited on 71 and 76.
  15. [15] P. Jordan, J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719-723. Cited on 70.
  16. [16] S.-M. Jung, On the Hyers-Ulam stability of the functional equation that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137. Cited on 71.
  17. [17] S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011. Cited on 71 and 76.
  18. [18] P. Kannappan, Functional equations and inequalities with applications, Springer Monographs in Mathematics, Springer, New York, 2009. Cited on 71.
  19. [19] Y.-H. Lee, On the Hyers-Ulam-Rassias stability of the generalized polynomial function of degree 2, Journal of the Chungcheong Mathematical Society 22 (2009), no. 2, 201-209. Cited on 71.
  20. [20] G. Maksa, Z. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), no. 2, 107-112. Cited on 71.
  21. [21] M.S. Moslehian, J.M. Rassias, A characterization of inner product spaces concerning an Euler-Lagrange identity, Commun. Math. Anal. 8 (2010), no. 2, 16-21. Cited on 70.
  22. [22] K. Nikodem, Z. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011), no. 1, 83-87. Cited on 70.
  23. [23] Th. M. Rassias, New characterizations of inner product spaces, Bull. Sci. Math. (2) 108 (1984), no. 1, 95-99. Cited on 70.
  24. [24] M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes Math. 88 (2014), no. 1-2, 163-168. Cited on 71 and 76.
  25. [25] J. Sikorska, On a direct method for proving the Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 372 (2010), no. 1, 99-109. Cited on 71.
DOI: https://doi.org/10.1515/aupcsm-2015-0006 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 69 - 79
Submitted on: Apr 10, 2015
Published on: Dec 30, 2015
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Renata Malejki, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.