Have a personal or library account? Click to login
Bounds on the Third Order Hankel Determinant for Certain Subclasses of Analytic Functions Cover

Bounds on the Third Order Hankel Determinant for Certain Subclasses of Analytic Functions

Open Access
|Mar 2018

References

  1. [1] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, S.S. Dragomir and J.Y. Cho, (Eds.), Nova Science Publishers, 6 (2010) 1-7.
  2. [2] R. Bucur, D. Breaz and L. Georgescu, Third Hankel determinant for a class of analytic functions with respect to symmetric points, Acta Uni- versitatis Apulensis, 42 (2015) 79-86.10.17114/j.aua.2015.42.06
  3. [3] D. Banasal, S. Maharana and J. K. Prajapat, Third Order Hankel deter- minant for certain univalent functions, J. Korean Math.Soc. 52(6) (2015) 1139-1148.10.4134/JKMS.2015.52.6.1139
  4. [4] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983.
  5. [5] R.M. Goel and B.S. Mehrok, A class of univalent functions, J. Austral. Math. Soc. (Series A) 35 (1983) 1-17.10.1017/S1446788700024733
  6. [6] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. Journal of Math. Analysis, 4(52) (2010) 2473-2585.
  7. [7] A. Janteng, S. Abdulhalim and M. Darus, Coeficient inequality for a function whose derivative has positive real part, J. Inequalities Pure and Applied Math. 7(2) Art. 50 (2006) 1-5.
  8. [8] A. Janteng, S. Abdulhalim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(13) (2007) 619-625.
  9. [9] A. Janteng, S.A. Halim and M. Darus, Estimate on the second Hankel functional for functions whose derivative has a positive real part, Journal of Quality Measurement and Analysis, 4(1) (2008) 189-195.
  10. [10] D. V. Krishna, B. Venkateswarlu, T. RamReddy, Third Hankel determi- nant for bounded turning functions of order alpha, J. Nigerian Mathe- matical Society, 34 (2015) 121-127. 10.1016/j.jnnms.2015.03.001
  11. [11] D. V. Krishna, T. RamReddy, Coeficient inequality for a function whose derivative has a positive real part of order ; Mathematica Bohemica 140(1) (2015) 43-52.10.21136/MB.2015.144178
  12. [12] N. Kharudin, A. Akbarally, D. Mohamad and S.C. Soh, The second Han- kel determinant for the class of close to convex functions, European J. Scientific Research, 66(3) (2011) 421-427.
  13. [13] R.J. Libera and E.J. Zlotkiewiez, Early coeficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982) 225-230.10.1090/S0002-9939-1982-0652447-5
  14. [14] R.J. Libera and E.J. Zlotkiewiez, Coeficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983) 251-257.10.1090/S0002-9939-1983-0681830-8
  15. [15] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962) 532-537.10.1090/S0002-9947-1962-0140674-7
  16. [16] A.K. Mishra, J.K. Prajapat and S. Maharana, Bounds on Hankel determi- nant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, 3: 1160557 (2016). [17] J.W. Noonan and D.K. Thomas. On the second Hankel determinant of areally mean p-valent functions. Trans. Amer. Math. Soc.,223(2)(1976) 337-34610.1080/23311835.2016.1160557
  17. [18] K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures et Appl., 28(c) (1983) 731-739.
  18. [19] M.S. Robertson, On the theory of univalent functions, Annals of Math., 37 (1936) 374-408.10.2307/1968451
  19. [20] C. Selvaraj and N. Vasanthi, Coeficient bounds for certain subclasses of close-to-convex functions, Int. J. Math. Analysis, 4(37) (2010) 1807-1814.
  20. [21] G. Shanmugam, B. A. Stephen and K.G. Subramanian, Second Hankel determinant for certain classes of analytic functions, Bonfring Int. J. Data Mining, 2(2) (2012) 57-60.10.9756/BIJDM.1368
  21. [22] T.V. Sudharsan, S.P. Vijayalakshmi, B.A. Stephen, Third Hankel deter- minant for a subclass of analytic univalent functions, Malaya J. Matem- atik, 2(4)(2014) 438-444.10.26637/mjm204/011
DOI: https://doi.org/10.1515/auom-2017-0045 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 199 - 214
Submitted on: Sep 9, 2016
Accepted on: Oct 24, 2016
Published on: Mar 31, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 S.P. Vijayalakshmi, T.V. Sudharsan, Daniel Breaz, K.G. Subramanian, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.