Have a personal or library account? Click to login
Strong convergence of a composite Halpern-type iteration for a family of nonexpansive mappings in CAT(0) spaces Cover

Strong convergence of a composite Halpern-type iteration for a family of nonexpansive mappings in CAT(0) spaces

By: Sajad Ranjbar  
Open Access
|Mar 2018

References

  1. [1] Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, (2007) 2350-2360.10.1016/j.na.2006.08.032
  2. [2] Bridson, M., Haeiger, A.: Metric Spaces of Non-Positive Curvature.Fundamental Principles of Mathematical Sciences. Springer, Berlin 319, (1999).10.1007/978-3-662-12494-9
  3. [3] Brown, K. S.: Buildings. Springer, New York, (1989).10.1007/978-1-4612-1019-1
  4. [4] Chaoha, P., Phon-on, A.: A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320(2), (2006) 983-987.10.1016/j.jmaa.2005.08.006
  5. [5] Chidume, C. E., Chidume, C. O.: Iterative approximation of fixed points of nonexpansive mappings. J. Math. Anal. Appl. 318, (2006) 288-295.10.1016/j.jmaa.2005.05.023
  6. [6] Cuntavepanit, A., Panyanak, B.: Strong Convergence of Modi_ed Halpern Iterations in CAT(0) Spaces. Fixed Point Theory Appl. 869458, (2011) doi:10.1155/2011/869458.
  7. [7] Dhompongsa, S., Panyanak, B.: On _-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56(10), (2008) 2572-2579.10.1016/j.camwa.2008.05.036
  8. [8] Goebel, K., Reich, S,: Uniform Convexity, hyperbolic Geometry, and nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc, New York, 83, (1984).
  9. [9] Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, (1967) 957-961.10.1090/S0002-9904-1967-11864-0
  10. [10] Kim, T. H., Xu, H. K.: Strong convergence of modi_ed Mann iterations. J. Math. Anal. Appl. 61, (2005) 51-60.10.1016/j.na.2004.11.011
  11. [11] Kirk, W. A.: Fixed point theorems in CAT(0) spaces and R-trees. Fixed Point Theory Appl. 4, (2004) 309-316.
  12. [12] Kirk, W. A.: Geodesic geometry and fixed point theory II. Paper pre- sented at the International Conference on Fixed Point Theory and Ap- plications, Yokohama Publ. (2004) 113-142 .10.1155/S1687182004406081
  13. [13] Kirk, W. A.: Geodesic geometry and fixed point theory. Paper presented at the Seminar of Mathematical Analysis, University of Sevilla Secretry, sevilla, spain, 64, (2003) 195-225.
  14. [14] Lions, P. L.: Approximation de points fixes de contractions. C.R. Acad Sci Paris Ser. A-B 284, (1977) A1357-A1359.
  15. [15] Qin, X., Su. Y., Shang, M.: Strong convergence of the composite Halpern iteration. J. Math. Anal. Appl. 339, (2008) 996-1002.10.1016/j.jmaa.2007.07.062
  16. [16] Reich, S.: Approximating fixed points of non-expansive mappings. Panam. Math. J. 4(2), (1994) 23-28.
  17. [17] Saejung, S.: Halperns iteration in CAT(0) spaces. Fixed Point Theory Appl. 471781, (2010).10.1155/2010/471781
  18. [18] Shioji, N., Takahashi, W.: Strong convergence of approximated sequences for non-expansive mappings in Banach spaces. Proc. Amer. Math. Soc. 125, (1997) 3641-3645.10.1090/S0002-9939-97-04033-1
  19. [19] Suzuki, T.: A su_cient and necessary condition for Halpern-type strong convergence to the fixed point of nonexpansive mapping. Proc. Amer. Math. Soc. 135, (2007) 99-106.10.1090/S0002-9939-06-08435-8
  20. [20] Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch Math. 58, (1992) 486-491.10.1007/BF01190119
  21. [21] Xu, H. K.: Another control condition in an iterative method for nonex- pansive mappings. Bull. Austral. Math. Soc. 65, (2002) 109-113.10.1017/S0004972700020116
  22. [22] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66, (2002) 240-256.10.1112/S0024610702003332
DOI: https://doi.org/10.1515/auom-2017-0044 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 183 - 197
Submitted on: Mar 1, 2017
Accepted on: Mar 31, 2017
Published on: Mar 31, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Sajad Ranjbar, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.