Have a personal or library account? Click to login
Positive bounded solutions for nonlinear polyharmonic problems in the unit ball Cover

Positive bounded solutions for nonlinear polyharmonic problems in the unit ball

Open Access
|Mar 2018

References

  1. [1] I. Bachar, H. Mâagli, Positive bounded solutions for semilinear elliptic equations in smooth domains, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 707-714.10.36045/bbms/1382448190
  2. [2] I. Bachar, H. Mâagli, S. Masmoudi, M. Zribi, Estimates for the Green function and singular solutions for polyharmonic nonlinear equation, Abstract and Applied Analysis 2003 (2003), 715-741.10.1155/S1085337503209039
  3. [3] S. Ben Othman, On a singular sublinear polyharmonic problem, Abstract and Applied Analysis 2006 (2006), 1-14.10.1155/AAA/2006/27969
  4. [4] S. Ben Othman, H. Mâagli, M. Zribi, Existence results for polyharmonic boundary value problems in the unit ball, Abstract and Applied Analysis 2007 (2007), 1-17.10.1155/2007/56981
  5. [5] T. Boggio, Sulle funzioni di Green d'ordine m, Rend. Circ. Math. Palermo, 20 (1905), 97-135. 10.1007/BF03014033
  6. [6] A. Dhii, Z. Zine El Abidine, Asymptotic behavior of positive solutions of a semilinear polyharmonic problem in the unit ball, Nonlinear Analysis 75 (2012), 625-636.10.1016/j.na.2011.08.064
  7. [7] J. Giacomoni, P. Mishra, K. Sreenadh, Fractional elliptic equations with critical exponential nonlinearity, Adv. Nonlinear Anal. 5 (2016), no. 1, 57-74.10.1515/anona-2015-0081
  8. [8] S. Gontara, Z. Zine El Abidine, Existence of positive bounded solutions for some nonlinear polyharmonic elliptic systems, Electronic Journal of Differential Equations 113 (2010), 1-18.
  9. [9] S. Kumar, D. Kumar, J. Singh, Fractional modelling arising in unidirectional propagation of long waves in dispersive media, Adv. Nonlinear Anal. 5 (2016), no. 4, 383-394.10.1515/anona-2013-0033
  10. [10] H. Mâagli, F. Toumi, M. Zribi, Existence of positive solutions for some polyharmonic nonlinear boundary-value problems, Electronic Journal of Differential Equations 58 (2003), 1-19.
  11. [11] G. Molica Bisci, V. R_adulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2985-3008.10.1007/s00526-015-0891-5
  12. [12] G. Molica Bisci, V. R_adulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, Vol. 162, Cambridge University Press, Cambridge, 2016.10.1017/CBO9781316282397
  13. [13] G. Molica Bisci, D. Repov_s, On doubly nonlocal fractional elliptic equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 2, 161-176.10.4171/rlm/700
  14. [14] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchho equations, Adv. Nonlinear Anal. 5 (2016), no. 1, 27-55.10.1515/anona-2015-0102
  15. [15] D. Repovš, B. Zhang, X. Zhang, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal. 142 (2016), 48-68.10.1016/j.na.2016.04.012
DOI: https://doi.org/10.1515/auom-2017-0041 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 143 - 153
Submitted on: Jul 29, 2016
Accepted on: Mar 6, 2017
Published on: Mar 31, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Habib Mâagli, Zagharide Zine El Abidine, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.