Have a personal or library account? Click to login
Regularity, positivity and asymptotic vanishing of solutions of a φ-Laplacian Cover

Regularity, positivity and asymptotic vanishing of solutions of a φ-Laplacian

Open Access
|Mar 2018

References

  1. [1] R.A. Adams and J.F. Fournier, Sobolev Spaces, 2nd edition, Academic Press, 2003.
  2. [2] W. Arriagada and J. Huentutripay. A Harnack's inequality in Orlicz- Sobolev spaces, to appear in Studia Mathematica, (2017)10.4064/sm8764-9-2017
  3. [3] W. Arriagada and J. Huentutripay. Blow-up rates of large solutions for a φ-Laplacian problem with gradient term, Proc. A Royal Soc. Edinburgh, 144, No. 1, (2014) 669-689.
  4. [4] W. Arriagada and J. Huentutripay. Characterization of a homoge- neous Orlicz space, Electron. J. Differential Equations, Vol. 2017 (2017), No. 49, 1-17.
  5. [5] W. Arriagada and J. Huentutripay. Existence and local boundedness of solutions of a φ-Laplacian problem. To appear in Applicable Anal- ysis, 2017. DOI at http://dx.doi.org/10.1080/00036811.2017.140458110.1080/00036811.2017.1404581
  6. [6] Ph. Clément and R. Zacher, A priori estimates for weak solutions of elliptic equations, preprint series: 04-30, Reports on Analysis, 2004.
  7. [7] T. Donaldson and N. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, Journal Funct. Anal., 8, (1971), 52-75.10.1016/0022-1236(71)90018-8
  8. [8] J. Fleckinger, R. Manásevich, N. Stavrakakis and F. De Th_elin, Prin- cipal Eigenvalues for some Quasilinear Elliptic Equations on RN, Advances in Differential Equations, 2, (1997), 981-1003.10.57262/ade/1366638680
  9. [9] N. Fukagai, M. Ito and K. Narukawa, Positive solutions of Quasilinear Elliptic Equations with Critical Orlicz-Sobolev Nonlinearity on RN, Funkcialaj Ekvacioj, 49, (2006), 235-267.10.1619/fesi.49.235
  10. [10] M. García-Huidobro, V. Le, R. Manásevich and K. Schmitt, On prin- cipal eigenvalues for quasilinear elliptic Differential operators: An Orlicz-Sobolev space setting, Nonlinear Differential Equations and Applications (NoDEA), 6, (1999), 207-225.
  11. [11] J.-P. Gossez, Orlicz- Sobolev spaces and nonlinear elliptic boundary value problems, Nonlinear Analysis, Function Spaces and Applications. Leipzig: BSB B. G. Teubner Verlagsgesellschaft, (1979), 59-94.
  12. [12] J.-P. Gossez and R. Manásevich, On a nonlinear eigenvalue problem in Orlicz-Sobolev Spaces, Proc. R. Soc. Edinburg, 132A, (2002), 891-909.10.1017/S0308210502000434
  13. [13] J. Huentutripay, Estudio de algunas ecuaciones diferenciales de carácter cuasilineal elíptico, PhD thesis, Universidad de Chile, 2009.
  14. [14] J. Huentutripay and R. Manásevich, Nonlinear eigenvalues for a Quasilinear Elliptic System in Orlicz-Sobolev Spaces, Journal of Dynamics and Differential Equations, 18, (2006), 901-929.10.1007/s10884-006-9049-7
  15. [15] J. Jost, Partial Differential equations, 3rd ed., Graduate Texts in Mathematics 214, Springer, 2013.10.1007/978-1-4614-4809-9
  16. [16] O. Kováčik and J. Rákosník, On spaces Lp(x) and W1;p(x), Czechoslovak Math. J., 41, (1991), 592-618..10.21136/CMJ.1991.102493
  17. [17] M. Krasnosel'skii and J. Rutic'kii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
  18. [18] O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and Quasilinear El- liptic Equations, Izdat. \Nauka", Moscow, (1964). English transl.: Academic Press, New York, (1968).
  19. [19] O.A. Ladyzhenskaya and N.N. Ural'tseva, Quasilinear elliptic equa- tions and variational problems with many independent variables, Usp. Mat. Nauk, 16 (1961), 19-92. English transl. in Russian Math. Surveys, 16 (1961), 17-91.10.1070/RM1961v016n01ABEH004099
  20. [20] G.M. Lieberman, The natural generalization of the natural condi- tions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. In PDE, 16, (1991), 311-361.10.1080/03605309108820761
  21. [21] M. Mihăilescu, V. Rădulescu and D. Repov_s, On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space set- ting, J. Math. Pures Appl., 93, (2010), 132-148.
  22. [22] V. Rádulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis: Theory, Methods and Applications, 121, (2015), 336-369.
  23. [23] V. Rădulescu and D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.10.1201/b18601
  24. [24] J. Serrin, Local Behavior of Solutions of Quasilinear equations, Acta. Math., 111, (1964), 247-302.10.1007/BF02391014
  25. [25] J.L. Vázquez, A Strong Maximum Principle for some Quasilinear Elliptic Equations, Appl. Math. Optim., 12, (1984), 191-202.10.1007/BF01449041
DOI: https://doi.org/10.1515/auom-2017-0035 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 59 - 72
Published on: Mar 31, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Waldo Arriagada, Jorge Huentutripay, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.