Have a personal or library account? Click to login

References

  1. [1] W. Audeh, and F. Kittaneh, Singular value inequalities for compact op- erators, Linear Algebra Appl. 437(10) (2012), 2516-2522.10.1016/j.laa.2012.06.032
  2. [2] T. Ando, Topics on operator inequalities. Sapporo: Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido Univer- sity, (1978).
  3. [3] R. Bhatia, and C. Davis, More operator versions of the Schwarz inequality, Comm. Math. Phys. 215(2) (2000), 239-244.10.1007/s002200000289
  4. [4] R. Bhatia, Positive Deffnite Matrices, Princeton University Press, (2007).
  5. [5] P.L. Čebyšev, O pribli_zennyh vyra_zenijah odnih integralov ćerez drugie, Soob_sćenija i protokoly zasedani_i Matemmatićeskogo obćestva pri Imper- atorskom Har'kovskom Universitete, No. 2, pp. 9398; Polnoe sobranie soćineni_i P. L. Čebyševa. Moskva Leningrad, 1948a, (1882), 128-131.
  6. [6] P.L. Čebyšev, Ob odnom rjade, dostavljaju_sćem predel'nye velićiny in- tegralov pri razlo_zenii podintegral'no_i funkcii na mno_zeteli, Prilo_zeni k 57 tomu Zapisok Imp. Akad. Nauk 4, Polnoe sobranie soćineni P. L. Čebyševa. MoskvaLeningrad, 1948b, (1883), 157-169.
  7. [7] T. Furuta, J. Mićić Hot, J. Pećarić and Y. Seo, Mond-Pećarić Methodin Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, (2005).
  8. [8] G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, 1st and 2nd edns, Cambridge University Press, Cambridge, England, (1934).
  9. [9] S.S. Dragomir, A concept of synchronicity associated with convex func- tions in linear spaces and applications, Bull. Aust. Math. Soc. 82(2) (2010), 328-339.10.1017/S0004972710000341
  10. [10] --, Čebyšev's type inequalities for functions of self-adjoint operators in Hilbert spaces, Linear Multilinear Algebra. 58(7) (2010), 805-814.10.1080/03081080902992104
  11. [11] --, Inequalities for D-synchronous functions and related functions, RGMIA Research Report Collection, 19 (2016).
  12. [12] --, Some trace inequalities of Čebyšev type for functions of operators in Hilbert spaces, Linear Multilinear Algebra. (2015), 1-14.
  13. [13] S.S. Dragomir, J. Pećarić and J. S_andor, The Čebyšev inequality in pre- Hilbertian spaces. II, In: Proceedings of the third symposium of math- ematics and its applications; Timi_soara; 1989. p.75-78. Rom. Acad., Timi_soara, 1990. MR1266442 (94m:46033).
  14. [14] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publi- cations of the Research Institute for Mathematical Sciences. 24(2) (1988), 283-293.10.2977/prims/1195175202
  15. [15] D.S. Mitrinović, J.E. Pećarić and A.M. Finc, Classical and new inequali- ties in analysis, Kluwer Academic Publishers, (1993).10.1007/978-94-017-1043-5
  16. [16] D.S. Mitrinović, J. Pećarić, On an identity of D.Z. Djoković, Prilozi Mak. Akad. Nauk. Umj. (Skopje). 12 (1991), 21-22.
  17. [17] D.S. Mitrinović and J.E. Pećarić, Remarks on some determinantal in- equalities, C. R. Math. Rep. Acad. Sci. Canada. 10 (1988), 41-45.
  18. [18] G. J. Murphy, C_-Algebras and Operator Theory, Academic Press, San Diego (1990).
  19. [19] J.E. Pećarić, R.R. Janić and P.R. Beesack, Note on multidimensional generalizations of Čebyšev's inequality, Ser. Mat. Fiz. 735 (1982), 15-18.
DOI: https://doi.org/10.1515/auom-2017-0025 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 135 - 147
Submitted on: Oct 3, 2016
Accepted on: Oct 24, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2017 Hamid Reza Moradi, Mohsen Erfanian Omidvar, Silvestru Sever Dragomir, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.