[1] W. Audeh, and F. Kittaneh, Singular value inequalities for compact op- erators, Linear Algebra Appl. 437(10) (2012), 2516-2522.10.1016/j.laa.2012.06.032
[2] T. Ando, Topics on operator inequalities. Sapporo: Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido Univer- sity, (1978).
[5] P.L. Čebyšev, O pribli_zennyh vyra_zenijah odnih integralov ćerez drugie, Soob_sćenija i protokoly zasedani_i Matemmatićeskogo obćestva pri Imper- atorskom Har'kovskom Universitete, No. 2, pp. 9398; Polnoe sobranie soćineni_i P. L. Čebyševa. Moskva Leningrad, 1948a, (1882), 128-131.
[6] P.L. Čebyšev, Ob odnom rjade, dostavljaju_sćem predel'nye velićiny in- tegralov pri razlo_zenii podintegral'no_i funkcii na mno_zeteli, Prilo_zeni k 57 tomu Zapisok Imp. Akad. Nauk 4, Polnoe sobranie soćineni P. L. Čebyševa. MoskvaLeningrad, 1948b, (1883), 157-169.
[7] T. Furuta, J. Mićić Hot, J. Pećarić and Y. Seo, Mond-Pećarić Methodin Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, (2005).
[9] S.S. Dragomir, A concept of synchronicity associated with convex func- tions in linear spaces and applications, Bull. Aust. Math. Soc. 82(2) (2010), 328-339.10.1017/S0004972710000341
[10] --, Čebyšev's type inequalities for functions of self-adjoint operators in Hilbert spaces, Linear Multilinear Algebra. 58(7) (2010), 805-814.10.1080/03081080902992104
[13] S.S. Dragomir, J. Pećarić and J. S_andor, The Čebyšev inequality in pre- Hilbertian spaces. II, In: Proceedings of the third symposium of math- ematics and its applications; Timi_soara; 1989. p.75-78. Rom. Acad., Timi_soara, 1990. MR1266442 (94m:46033).
[14] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publi- cations of the Research Institute for Mathematical Sciences. 24(2) (1988), 283-293.10.2977/prims/1195175202
[15] D.S. Mitrinović, J.E. Pećarić and A.M. Finc, Classical and new inequali- ties in analysis, Kluwer Academic Publishers, (1993).10.1007/978-94-017-1043-5