Have a personal or library account? Click to login

The Avriel-Ben-Tal algebraic operations approach for a short version proof of the Karush-Kuhn-Tucker optimality conditions

Open Access
|Sep 2017

References

  1. [1] Avriel, M. , Nonlinear Programming: Analysis and Methods, Prentice Hall, Englewood Clifis, NJ, 1976.
  2. [2] Bazaraa, M.S., Shetty, C.M., Nonlinear Programming: Theory and Algo- rithms. 3nd Edition, Wiley, New York, 2001.
  3. [3] Ben-Tal A., On generalized means and generalized convex functions, J.Optim.Theory Appl., 21:1-13, 1977.10.1007/BF00932539
  4. [4] Dehui,Y, Altannar,C, Xiaoling, L, Pardalos, P,M, Generalized convexities and generalized gradients based on algebraic operations, J. Math. Anal. Appl., 321(2):675-690, ,2006.10.1016/j.jmaa.2005.08.093
  5. [5] Grossman, H.I. Production, Appropriation, and Land Reform. American Economic Review, 84, 705-712, 1994.
  6. [6] Mangasarian, O.L., Fromovitz, S., The Fritz John Necessary Optimal- ity Conditions in the Presence of Equality and Inequality Constraints, Journal of Mathematical,1967.10.1016/0022-247X(67)90163-1
  7. [7] Mangasarian, O.L., Nonlinear Programming, SIAM, Philadelphia, 1994.10.1137/1.9781611971255
  8. [8] Mas-Colell, A., Whinston, M.D., Green, J.R., Microeconomic Theory, Oxford University Press, New York. Analysis and Applications, 17, 37-47, 1995.
  9. [9] Negishi, T., Welfare Economics and Existence of an Equilibrium for a Competitive Economy, Metroeconomica, 12, 92-97, 1960.10.1111/j.1467-999X.1960.tb00275.x
  10. [10] Nocedal, J., Wright, S.J., Numerical Optimization. 2nd Edition, Springer, Berlin, 2006.
  11. [11] Preda, V., On Eficiency and Duality for Multi-objective Programs, Jour- nal of Mathematical Analysis and Applications, 166(8), 365-377, 1992.10.1016/0022-247X(92)90303-U
  12. [12] Preda, V., Some optimality conditions for multiobjective programming problems with set functions, Revue Roumaine de Mathmatiques Pures et Appliques 39 (3), 233-248, 1994.
  13. [13] Preda, V., Duality for multiobjective fractional programming problems involving n-set functions, Analysis and Topology, 569-583, 1998.10.1142/9789812817297_0033
  14. [14] Preda, V., Stanciu, D.E., New suficient conditions for B-preinvex and some extinsion, Proceedings of The Roumanian Academy, 12(3),197-202, 2011.
  15. [15] Rogerson, W.P., The First-Order Approach to Principal-Agent Problems, Econometrica, 53, 1357-1367, 1985.10.2307/1913212
  16. [16] Tanaka, Y, A short derivation of the Kuhn-Tucker conditions, Open Jour- nal of Optimization, 4(2), 47-50,2015.10.4236/ojop.2015.42006
  17. [17] Zang, Q.X. On suficiency and duality of solutions for nonsmooth (h; ')- semi-infinite programming, Acta Math.Appl. Sinica 24, 129138, 2001.
  18. [18] Xu, Y., Liu, S., Kuhn-Tucker Necessary Conditions for (h; ')- multiobjective optimization problems, Journal of Systems Science and Complexity, 2004.
DOI: https://doi.org/10.1515/auom-2017-0019 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 39 - 48
Submitted on: May 27, 2016
Accepted on: Jun 29, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2017 Veronica Cornaciu, Ileana Ioana, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.