[1] M. Kisielewicz, Stochastic diérential inclusions and applications, Springer Optimization and Its Applications, 80. Springer, New York, 2013.10.1007/978-1-4614-6756-4
[2] B. Ahmad, S.K. Ntouyas, Existence results for higher order fractional diérential inclusions with multi-strip fractional integral boundary con- ditions, Electron. J. Qual. Theory Diér. Equ. (2013), No. 20, 19 pp.10.14232/ejqtde.2013.1.20
[3] S. Balochian, M. Nazari, Stability of particular class of fractional diér- ential inclusion systems with input delay. Control Intell. Syst. 42 (2014), no. 4, 279-283.10.2316/Journal.201.2014.4.201-2612
[5] J. Sun, Q. Yin, Robust fault-tolerant full-order and reduced-order ob- server synchronization for diérential inclusion chaotic systems with un- known disturbances and parameters, J. Vib. Control 21 (2015), no. 11, 2134-2148.10.1177/1077546313508296
[6] S.K. Ntouyas, S. Etemad, J. Tariboon, Existence results for multi-term fractional diérential inclusions, Adv. Diér. Equ. 2015, 2015:140.10.1186/s13662-015-0481-z
[7] B. Ahmad, R.P Agarwal, A. Alsaedi, Fractional diérential equations and inclusions with semiperiodic and three-point boundary conditions, Bound. Value Probl. 2016, 2016:28, 20 pages.10.1186/s13661-016-0533-7
[9] I.N. Sneddon, The use in mathematical analysis of Erdélyi-Kober op- erators and some of their applications. In: Fractional Calculus and Its Applications, Proc. Internat. Conf. Held in New Haven, Lecture Notes in Math., 1975, 457, Springer, N. York, 37-79.10.1007/BFb0067097
[10] S.L. Kalla, V.S. Kiryakova, An H-function generalized fractional calculus based upon compositions of Erdélyi-Kober operators in Lp; Math. Japon- ica 35 (1990), 1-21.
[11] S.B. Yakubovich, Yu.F. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, Mathematics and its Appl. 287, Kluwer Acad. Publ., Dordrecht-Boston-London, 1994.10.1007/978-94-011-1196-6_21
[20] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary diérential equations, Bull. Acad. Polon. Sci. Ser.Sci. Math. Astronom. Phys. 13 (1965), 781{786.
[21] R. Wegrzyk, Fixed point theorems for multifunctions and their applica- tions to functional equations, Dissertationes Math. (Rozprawy Mat.) 201 (1982) 28.
[23] C. Castaing, M. Valadier, Convex Analysis and Measurable Multi- functions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin- Heidelberg-New York, 1977.10.1007/BFb0087685