Have a personal or library account? Click to login
Image Restoration using a Nonlinear Second-order Parabolic PDE-based Scheme Cover
Open Access
|Sep 2017

References

  1. [1] F. Guichard, L. Moisan and J. M. Morel, \A review of P.D.E. models in image processing and image analysis", Journal de Physique, vol. 4, pp. 137-154, 2001.10.1051/jp42002006
  2. [2] P. Perona, J. Malik, “Scale-space and edge detection using anisotropic diffusion", Proc. of IEEE Computer Society Workshop on Computer Vision, 16-22, nov. 1987.
  3. [3] J. Weickert, Anisotropic Diffusion in Image Processing, European Con- sortium for Mathematics in Industry. B. G. Teubner, Stuttgart, Germany, 1998.
  4. [4] L. Rudin, S. Osher and E. Fatemi, \Nonlinear total variation based noise removal algorithms", Physica D: Nonlinear Phenomena, 60, pp. 259-268, 1992.10.1016/0167-2789(92)90242-F
  5. [5] A. Buades, B. Coll, J. M. Morel, "The staircasing effect in neighborhood filters and its solution", IEEE Transactions on Image Processing, 15, 6, pp. 1499-1505, 2006.10.1109/TIP.2006.87113716764274
  6. [6] Q. Chen, P. Montesinos, Q. Sun, P. Heng, D. Xia, "Adaptive total variation denoising based on difference curvature", Image Vis. Comput., 28, pp. 298-306, 2010.10.1016/j.imavis.2009.04.012
  7. [7] Y. Hu, M. Jacob, "Higher degree total variation (HDTV) regularization for image recovery", IEEE Trans. Image Processing, 21, pp. 2559-2571, 2012.10.1109/TIP.2012.218314322249711
  8. [8] J. F. Cai, S. Osher, Z. Shen, "Split Bregman methods and frame based image restoration", Multiscale Model. Sim., 8, Issue 2, pp. 337-369, 2009.10.1137/090753504
  9. [9] T. Barbu, "Variational Image Denoising Approach with Diffusion Porous Media Flow", Abstract and Applied Analysis, Volume 2013.10.1155/2013/856876
  10. [10] T. Barbu, \A Novel Variational PDE Technique for Image Denoising", Lecture Notes in Computer Science (Proc. of the 20th International Conference on Neural Information Processing, ICONIP 2013, part III, Daegu, Korea, November 3-7, 2013), vol. 8228, pp. 501-508, Springer-Verlag Berlin Heidelberg, M. Lee et al. (Eds.), 2013.
  11. [11] T. Barbu, A. Favini, \Rigorous mathematical investigation of a nonlinear anisotropic diffusion-based image restoration model", in Electronic Journal of Differential Equations, number 129, pp. 1-9, 2014.
  12. [12] T. Barbu, \Robust anisotropic diffusion scheme for image noise removal", Procedia Computer Science (Proc. of 18thInternational Conference in Knowledge Based and Intelligent Information & Engineering Systems, KES 2014, Sept. 15-17, Gdynia, Poland), by Elsevier, 35, pp. 522-530, 2014.10.1016/j.procs.2014.08.133
  13. [13] M. Hazewinkel, \Variational calculus", Encyclopedia of Mathematics, Springer, ISBN: 978-1-55608-010-4, 2001.
  14. [14] O.A. Ladyzhenskaya, B.A. Solonnikov and N.N. Uraltzava, Linear and quasi-linear equations of parabolic type, Prov. Amer. Math. Soc., 1968.10.1090/mmono/023
  15. [15] J.L. Lions, Control of distributed singular systems, Gauthier-Villars, Paris, 1985.
  16. [16] C. Moroşanu, Analysis and optimal control of phase-field transition system: Fractional steps methods, Bentham Science Publishers, 2012, http://dx.doi.org/10.2174/97816080535061120101.10.2174/97816080535061120101
  17. [17] P. Johnson, Finite Difference for PDEs, School of Mathematics, University of Manchester, Semester I, 2008.
  18. [18] K. H. Thung, P. Raveendran, "A survey of image quality measures", Proc. International Conference for Technical Postgraduates (TECHPOS), pp. 1-4, 2009.10.1109/TECHPOS.2009.5412098
DOI: https://doi.org/10.1515/auom-2017-0003 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 33 - 48
Submitted on: Feb 1, 2016
Accepted on: Apr 1, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Tudor Barbu, Costică Moroşanu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.