Have a personal or library account? Click to login

References

  1. [1] T. Abeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, Journal of Computational Analysis & Applications 19 (2015), 883-891.
  2. [2] I.A. Bakhtin, The contraction principle in quasimetric spaces, Func. An., Ulianowsk, Gos. Ped. Ins. 30 (1989), 26-37.
  3. [3] M. Bota, A. Molnar, C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory 12 (2011), 21-28.
  4. [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1993), 5-11.
  5. [5] M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish Journal of Analysis and Number Theory 1 (2013), 13-16.10.12691/tjant-1-1-4
  6. [6] C. Li, R.P. Agarwal, C.-L. Tang, Infinitely many periodic solutions for ordinary p-Laplacian systems, Adv. Nonlinear Anal. 4 (2015), 251-261.10.1515/anona-2014-0048
  7. [7] N. Mlaiki, α-ψ-Contractive Mapping on S-Metric Space, Mathematical Sciences Letters 4 (2015), 9-12.
  8. [8] N. Mlaiki, Common fixed points in complex S-metric space, Advances in Fixed Point Theory 4 (2014), 509-524.
  9. [9] N. Mlaiki, A contraction principle in partial S-metric space, Universal Journal of Mathematics and Mathematical Sciences 5 (2014), 109-119.
  10. [10] R. Precup, Nash-type equilibria and periodic solutions to nonvariational systems, Adv. Nonlinear Anal. 3 (2014), no. 4, 197-207.
  11. [11] D. Repovš, A two-parameter control for contractive-like multivalued mappings. Topology Appl. 159 (2012), no. 7, 18991905.
  12. [12] D. Repovš, P.V. Semenov, Continuous Selections of Multivalued Mappings, Mathematics and its Applications, Vol. 455, Kluwer Academic Publishers, Dordrecht, 1998.10.1007/978-94-017-1162-3
  13. [13] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik. 64 (2012), 258-266.
  14. [14] S. Sedghi, N. Shobe, A Common unique random fixed point theorems in S-metric spaces, Journal of Prime Research in Mathematics 7 (2011), 25-34.
  15. [15] S. Shukla, Partial b-Metric Spaces and Fixed Point Theorems, Mediterranean Journal of Mathematics 11 (2014), 703-711.10.1007/s00009-013-0327-4
DOI: https://doi.org/10.1515/auom-2016-0062 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 351 - 362
Submitted on: Feb 9, 2016
Accepted on: Feb 16, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Nizar Souayah, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.