[1] L. Anand, M.E. Gurtin, A theory of amorphous solids undergoing large deformations I nt. J. Solids Struct., Vol. 40(2003), 1465-148710.1016/S0020-7683(02)00651-0
[2] J.L. Bouvard, D.K. Ward, D. Hossain, E.B. Marin, D.J. Bammann, M.F. Horstemeyer, A general inelastic internal state variable model for amorphous glassy polymers, Acta Mechanica, Vol. 213, 1-2(2010), 71-96
[5] C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5, Carpathian Journal of Mathematics, 31(2): 197- 204, 2015.10.37193/CJM.2015.02.07
[6] G. Groza, M. Jianu, N. Pop, Infinitely differentiable functions represented into Newton interpolating series, Carpathian Journal of Mathematics, 30(3): 309-316, 2014.10.37193/CJM.2014.03.13
[7] L. Harabagiu, O. Simionescu-Panait, Propagation of inhomogeneous plane waves in isotropic solid crystals, Ann. Sci. Univ. Ovidius Constanta, 23 (3): 55-64, 201510.1515/auom-2015-0047
[8] D. Iesan, R. Quintanilla, Some theorems in the theory of microstretch thermopiezo-electricity, Int. J. Engng. Sci., Vol. 45, 1(2007), 1-1610.1016/j.ijengsci.2006.10.001
[9] R. Kumar, Wave propagation in a microstretch thermoelastic diffusion solid, Ann. Sci. Univ. Ovidius Constanta, 23 (1): 127-169, 2015.10.1515/auom-2015-0010
[10] M. Marin, On existence and uniqueness in thermoelasticity of micropolar bodies, Comptes Rendus, Acad. Sci. Paris, Serie II, vol. 321 (12), 475-480, 1995
[11] M. Marin, Some basic theorems in elastostatics of micropolar materials with voids, J. Comp. Appl. Math., Vol. 70(1), 115-126, 199610.1016/0377-0427(95)00137-9
[12] M. Marin, C. Marinescu, Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies, Int. J. Eng. Sci., vol. 36 (1), 73-86, 199810.1016/S0020-7225(97)00019-0
[13] M. Marin, A domain of inuence theorem for microstretch elastic materials, Nonlinear Analysis: R.W.A., vol. 11(5), 3446-3452, 201010.1016/j.nonrwa.2009.12.005
[14] M. Marin, Lagrange identity method for microstretch thermoelastic materials, J. Math. Analysis and Applications, vol. 363 (1), pp. 275-286, 201010.1016/j.jmaa.2009.08.045
[15] K. Sharma, M. Marin, Reection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, Ann. Sci. Univ. Ovidius Constanta, vol. 22 (2) (2014), 151-17510.2478/auom-2014-0040
[17] J.A. Sherburn , M.F. Horstemeyer, D.J. Bammann, J.R. Baumgardner, Application of the Bammann inelasticity internal state variable constitutive model to geological materials, Geophysical J. Int., Vol. 184, 3(2011), 1023-103610.1111/j.1365-246X.2010.04917.x