Have a personal or library account? Click to login
By:
Open Access
|Sep 2017

References

  1. [1] L. Anand, M.E. Gurtin, A theory of amorphous solids undergoing large deformations I nt. J. Solids Struct., Vol. 40(2003), 1465-148710.1016/S0020-7683(02)00651-0
  2. [2] J.L. Bouvard, D.K. Ward, D. Hossain, E.B. Marin, D.J. Bammann, M.F. Horstemeyer, A general inelastic internal state variable model for amorphous glassy polymers, Acta Mechanica, Vol. 213, 1-2(2010), 71-96
  3. [3] S. Chirita, On the linear theory of thermo-viscoelastic materials with internal state variables, Arch. Mech., Vol. 33(1982), 455-464
  4. [4] A.C. Eringen, Theory of thermo-microstretch elastic solids, Int. J. Engng. Sci., Vol. 28(1990), 1291-130110.1016/0020-7225(90)90076-U
  5. [5] C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5, Carpathian Journal of Mathematics, 31(2): 197- 204, 2015.10.37193/CJM.2015.02.07
  6. [6] G. Groza, M. Jianu, N. Pop, Infinitely differentiable functions represented into Newton interpolating series, Carpathian Journal of Mathematics, 30(3): 309-316, 2014.10.37193/CJM.2014.03.13
  7. [7] L. Harabagiu, O. Simionescu-Panait, Propagation of inhomogeneous plane waves in isotropic solid crystals, Ann. Sci. Univ. Ovidius Constanta, 23 (3): 55-64, 201510.1515/auom-2015-0047
  8. [8] D. Iesan, R. Quintanilla, Some theorems in the theory of microstretch thermopiezo-electricity, Int. J. Engng. Sci., Vol. 45, 1(2007), 1-1610.1016/j.ijengsci.2006.10.001
  9. [9] R. Kumar, Wave propagation in a microstretch thermoelastic diffusion solid, Ann. Sci. Univ. Ovidius Constanta, 23 (1): 127-169, 2015.10.1515/auom-2015-0010
  10. [10] M. Marin, On existence and uniqueness in thermoelasticity of micropolar bodies, Comptes Rendus, Acad. Sci. Paris, Serie II, vol. 321 (12), 475-480, 1995
  11. [11] M. Marin, Some basic theorems in elastostatics of micropolar materials with voids, J. Comp. Appl. Math., Vol. 70(1), 115-126, 199610.1016/0377-0427(95)00137-9
  12. [12] M. Marin, C. Marinescu, Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies, Int. J. Eng. Sci., vol. 36 (1), 73-86, 199810.1016/S0020-7225(97)00019-0
  13. [13] M. Marin, A domain of inuence theorem for microstretch elastic materials, Nonlinear Analysis: R.W.A., vol. 11(5), 3446-3452, 201010.1016/j.nonrwa.2009.12.005
  14. [14] M. Marin, Lagrange identity method for microstretch thermoelastic materials, J. Math. Analysis and Applications, vol. 363 (1), pp. 275-286, 201010.1016/j.jmaa.2009.08.045
  15. [15] K. Sharma, M. Marin, Reection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, Ann. Sci. Univ. Ovidius Constanta, vol. 22 (2) (2014), 151-17510.2478/auom-2014-0040
  16. [16] R.R. Nachlinger, J.W. Nunziato, Wave propagation and uniqueness theorem for elastic materials with ISV, Int. J. Engng. Sci., Vol. 14(1976), 31-3810.1016/0020-7225(76)90053-7
  17. [17] J.A. Sherburn , M.F. Horstemeyer, D.J. Bammann, J.R. Baumgardner, Application of the Bammann inelasticity internal state variable constitutive model to geological materials, Geophysical J. Int., Vol. 184, 3(2011), 1023-103610.1111/j.1365-246X.2010.04917.x
  18. [18] K.N. Solanki, D.J. Bammann, A thermodynamic framework for a gradient theory of continuum damage, American Acad. Mech. Conf., New Orleans, 2008
  19. [19] C.Wei, M.M. Dewoolkar, Formulation of capillary hysteresis with internal state variables, Water resources research, Vol. 42(2006), 1-16.
DOI: https://doi.org/10.1515/auom-2016-0057 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 241 - 257
Submitted on: Jun 28, 2015
Accepted on: Sep 25, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Marin Marin, Sorin Vlase, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.