Have a personal or library account? Click to login
Open Access
|Sep 2017

References

  1. [1] Y. Alagoz, K. H. Oral and S. Yuce, Split quaternion matrices, Miskolc Math. Notes 13 (2012), 223-232.10.18514/MMN.2012.364
  2. [2] A. Baker, Right eigenvalues for quaternionic matrices: a topological approach, Linear Algebra and ppl. 286 (1999), 303-309.10.1016/S0024-3795(98)10181-7
  3. [3] J. H. Bevis, F. J. Hall and R. E. Hartwig,, The matrix equation [xxx] = C and its special cases., SIAM J. Matrix Anal. Appl. 9 (1988), 348-359.10.1137/0609029
  4. [4] J. H. Bevis, F. J. Hall and R. E. Hartwig, Consimilarity and the matrix equation [xxx] = C, Current Trends in Matrix Theory. Elsevier Science Publishing Co. Inc., 1987.
  5. [5] J. Cockle, On systems of algebra involving more than one imaginary, Phil. Mag. 35 (1849), 434-635.
  6. [6] M. Erdogdu and M. Ozdemir, Two-sided linear split quaternionic equations with n unknowns, Linear and Multilinear Alg. 63 (2015), 97-106.10.1080/03081087.2013.851196
  7. [7] M. Erdogdu and M. Ozdemir, On Eigenvalues of split quaternion matrices, Adv. Appl. Clifford Alg. 23 (2013), 625-638.10.1007/s00006-013-0399-z
  8. [8] C. Flaut, Some equation in algebras obtained by cayley-dickson process, An. St. Univ. Ovidius Constant 9 (2001), 45-68.
  9. [9] W. R. Hamilton, Lectures on quaternions, Hodges and Smith, Dublin, 1853.
  10. [10] L. Huang and W. So, On left eigenvalues of a quaternionic matrix, Linear Algebra and Appl. 323 (2001), 105-116.10.1016/S0024-3795(00)00246-9
  11. [11] L. Huang, Consimilarity of quaternion matrices and complex matrices, Linear Algebra and Appl. 331 (2001), 21-30.10.1016/S0024-3795(01)00266-X
  12. [12] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, New York, 1985.10.1017/CBO9780511810817
  13. [13] T.S. Jiang and M.S. Wei., On a solution of the quaternion matrix equation [xxx] = C and its application, Acta Math. Sin. 21 (2005), 483-490.10.1007/s10114-004-0428-x
  14. [14] T.S. Jiang and S. Ling, On a solution of the quaternion matrix equation [xxx] = C and its applications, Adv. Appl. Clifford Algebras 23 (2013), 689-699.10.1007/s00006-013-0384-6
  15. [15] T. Jiang and S. Ling, Algebraic methods for condiagonalization under consimilarity of quaternion matrices in quaternionic quantum mechanics, Adv. Appl. Clifford Alg. 23 (2013), 405-415.10.1007/s00006-013-0379-3
  16. [16] L. Kula and Y. Yayli, Split quaternions and rotations in semi euclidean space, J. Korean Math. Soc. 44 (2007), 1313-1327.10.4134/JKMS.2007.44.6.1313
  17. [17] M. Ozdemir and A. A. Ergin, Rotations with unit timelike quaternions in minkowski 3-space, J. Geom. Phys. 56 (2006), 322-336.10.1016/j.geomphys.2005.02.004
  18. [18] M. Ozdemir, M. Erdogdu and Hakan Simsek, On the eigenvalues and eigenvectors of a lorentzian rotation matrix by using split quaternions, Adv. Appl. Clifford Alg. 24 (2014), 179-192.10.1007/s00006-013-0424-2
  19. [19] L. A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc. 42 (1936), 737-743.10.1090/S0002-9904-1936-06417-7
  20. [20] Z. Zhang, Z. Jiang and T. Jiang, Algebraic methods for least squares problem in split quaternionic mechanics, Appl. Math. Comput. 269 (2015), 618-625.
DOI: https://doi.org/10.1515/auom-2016-0054 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 189 - 207
Submitted on: Dec 7, 2015
Accepted on: Feb 16, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Hidayet Hüda Kösal, Mahmut Akyiğit, Murat Tosun, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.