Have a personal or library account? Click to login
Open Access
|Sep 2017

References

  1. [1] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc. 141 (2013), 1029-1039.10.1090/S0002-9939-2012-11743-5
  2. [2] B. Ahmadi Kakavandi, M. Amini, Duality and Subdifferential for Convex Functions on Complete CAT(0) Metric Spaces, Nonlinear Anal. 73 (2010) 3450-3455.10.1016/j.na.2010.07.033
  3. [3] M. Bačák, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), 689-701.10.1007/s11856-012-0091-3
  4. [4] I.D. Berg, I.G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata 133 (2008) 195-218.10.1007/s10711-008-9243-3
  5. [5] O.A. Boikanyo, G. Morosanu, A proximal point algorithm converging strongly for general errors, Optim. Lett. 4 (2010) 635-641.10.1007/s11590-010-0176-z
  6. [6] O.A. Boikanyo, G. Morosanu, Modified Rockafellar's algorithms, Math. Sci. Res. J. 13 (2009) 101-122.
  7. [7] O.A. Boikanyo, G. Morosanu, Inexact Halpern-type proximal point algorithm, J. Glob. Optim. 51 (2011) 11-26.10.1007/s10898-010-9616-7
  8. [8] O.A. Boikanyo, G. Morosanu, Four parameter proximal point algorithms, Nonlinear Anal. 74 (2011) 544-555.10.1016/j.na.2010.09.008
  9. [9] O.A. Boikanyo, G. Morosanu, Strong convergence of a proximal point algorithm with bounded error sequence, Optim. Lett. 7 (2013) no. 2, 415-420.10.1007/s11590-011-0418-8
  10. [10] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature. Fundamental Principles of Mathematical Sciences. Springer, Berlin 319 (1999).10.1007/978-3-662-12494-9
  11. [11] F.E. Browder, Convergence of approximants to fixed points of nonexpansive mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967) 82-90.10.1007/BF00251595
  12. [12] H. Brézis, P.L. Lions, Produits infinis derésolvantes, Israel J. Math. 29 (1978) 329-345.10.1007/BF02761171
  13. [13] K.S. Brown, Buildings. Springer, New York, (1989).10.1007/978-1-4612-1019-1
  14. [14] D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies in Math., 33, Amer. Math. Soc., Providence, RI (2001).10.1090/gsm/033
  15. [15] H. Dehghan, J. Rooin, Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces, J. Nonlinear Convex Anal. (To appear)
  16. [16] S. Dhompongsa, B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008) 2572-2579.10.1016/j.camwa.2008.05.036
  17. [17] B. Djafari Rouhani, H. Khatibzadeh, On the proximal point algorithm, J. Optim. Theory Appl. 137 (2008) 411-417.10.1007/s10957-007-9329-3
  18. [18] R. Espínola, A. Fernández-León, CAT(k)-spaces, weak convergence and fixed points, J.Math. Anal. Appl. 353 (2009) 410-427.10.1016/j.jmaa.2008.12.015
  19. [19] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc, New York, 83 (1984).
  20. [20] M. Gromov, S.M. Bates, Metric structures for Riemannian and non-Riemannian spaces, with appendices by M. Katz, P. Pansu and S. Semmes, ed. by J. Lafontaine and P. Pansu, Progr. Math. 152, Birkhäuser, Boston (1999).
  21. [21] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991) 403-419.10.1137/0329022
  22. [22] J. Jöst, Nonpositive curvature: Geometric and analytic aspects, Lectures Math. ETH ZNurich, BirkhNauser, Basel (1997).10.1007/978-3-0348-8918-6
  23. [23] S. Kamimura, W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert Spaces, J. Approx. Theory 106 (2000) 226-240.10.1006/jath.2000.3493
  24. [24] H. Khatibzadeh, Some remarks on the proximal point algorithm, J. Optim. Theory Appl. 153 (2012) 769-778.10.1007/s10957-011-9973-5
  25. [25] H. Khatibzadeh, S. Ranjbar, On the Strong Convergence of Halpern Type Proximal Point Algorithm, J. Optim. Theory Appl. 158 (2013) 385-396.10.1007/s10957-012-0213-4
  26. [26] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aust. Math Soc. (Online published) doi: 10.1017/s1446788716000446.
  27. [27] W.A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl. 4 (2004) 309-316.10.1155/S1687182004406081
  28. [28] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008) 3689-3696.10.1016/j.na.2007.04.011
  29. [29] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976) 179-182.10.1090/S0002-9939-1976-0423139-X
  30. [30] B. Martinet, Régularisation d'Inéquations Variationnelles par Approximations Successives, Revue Franćaise d'Informatique et de Recherche Opérationnelle 3 (1970) 154-158.10.1051/m2an/197004R301541
  31. [31] S. Ranjbar, W-convergence of the proximal point algorithm in complete CAT(0) metric spaces, Bull. Iranian Math. Soc. (To appear)
  32. [32] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898.10.1137/0314056
  33. [33] F. Wang, H. Cui, On the contraction proximal point algorithms with multi parameters, J. Glob. Optim. 54 (2012) 485-491.10.1007/s10898-011-9772-4
  34. [34] H.K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002) 240-256.10.1112/S0024610702003332
  35. [35] H.K. Xu, A regularization method for the proximal point algorithm, J. Glob. Optim. 36 (2006) 115-125.10.1007/s10898-006-9002-7
DOI: https://doi.org/10.1515/auom-2016-0052 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 141 - 159
Submitted on: Oct 10, 2015
Accepted on: Dec 15, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Mohammad Taghi Heydari, Sajad Ranjbar, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.