Have a personal or library account? Click to login

Cartesian composition and the problem of generalizing the MAC condition to quasi-multiautomata

Open Access
|Sep 2017

References

  1. [1] A. R. Ashrafi, A. Madanshekaf, Generalized action of a hypergroup on a set, Italian J. Pure and Appl. Math., 15(3) (1998), 127-135.
  2. [2] R. A. Borzooei, H. R. Varasteh, A. Hasankhani, F-Multiautomata on join spaces induced by differential operators, Appl. Math. (Irvine) 5 (2014), 1386-1391.10.4236/am.2014.59130
  3. [3] J. Chvalina, Infinite multiautomata with phase hypergroups of various operators. In Proc. 10th International Congress on Algebraic Hyperstructures and Applications; Hošková, Š., Ed.; University of Defense: Brno, 2009.
  4. [4] J. Chvalina, L. Chvalinová, Join space of linear ordinary differential operators of the second order, Folia Fac. Sci. Nat. Univ. Masarykianae Brunesis, Mathematica 13 (2002), 77-86 (Colloqium on Differential and Difference Equations, CDDE 2002).
  5. [5] J. Chvalina, Š. Hošková-Mayerová, On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators, An. Şt. Univ. Ovidius Constantá, 22(1) (2014), 85-103.10.2478/auom-2014-0008
  6. [6] J. Chvalina, Š. Hošková-Mayerová, A. Dehghan Nezhad, General actions of hyperstructures and some applications, An. Şt. Univ. Ovidius Constantá, 21(1) (2013), 59-82.10.2478/auom-2013-0004
  7. [7] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, 2003.10.1007/978-1-4757-3714-1
  8. [8] W. Dörfler, The cartesian composition of automata, Math. System Theory 11 (1978), 239-257.10.1007/BF01768479
  9. [9] F. Gécseg, I. Peák, Algebraic Theory of Automata, Budapest, Akadémia Kiadó, 1972.
  10. [10] D. S. Malik, J. N. Mordenson, M. K. Sen, The cartesian composition of fuzzy finite state machines, Kybernetics, 24 (1995), 98-110.10.1108/03684929510089394
  11. [11] G. G. Massouros, Hypercompositional structures in the theory of languages and automata. An. Şt. Univ. A.I. Cuza Iaşi, Sect. Inform., III (1994), 65-73.
  12. [12] G. G. Massouros, J. Mittas, Languages, Automata and Hypercompositional Structures, In Proceedings of the 4th International Congress on Algebraic Hyperstructures and Applications, Xanthi 1990 ; World Scientific, 1991.
  13. [13] J. N. Mordenson, D. S. Malik, Fuzzy Automata and Languages - Theory and Applications, Chapman & Hall CRC Press, 2002.
  14. [14] M. Novák, Some basic properties of EL-hyperstructures, European J. Combin., 34 (2013), 446-459.10.1016/j.ejc.2012.09.005
  15. [15] M. Novák, On EL-semihypergroups, European J. Combin. 44 Part B (2015), 274-286.10.1016/j.ejc.2014.08.014
  16. [16] S. Subrmaniyan, M. Rajasekar, Cartesian composition in bipolar fuzzy finite state machines, International Journal of Computer Applications 92(11) (2014), 1-7.10.5120/16050-5154
  17. [17] J. Zhan, S. Sh. Mousavi, J. Jafarpour, On hyperactions of hypergroups. U.P.B. Sci. Bull., Series A, 73(1) (2011), 117-128.
DOI: https://doi.org/10.1515/auom-2016-0049 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 79 - 100
Submitted on: Jul 10, 2015
Accepted on: Dec 15, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Jan Chvalina, Štěpán Kŕehlík, Michal Novák, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.