[1] L.A. Caffarelli, N. Garofalo, F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994), 1457-1473 .10.1002/cpa.3160471103
[2] M. Cozzi, A. Farina, E. Valdinoci, Gradient bounds and rigidity results for singular, degenerate, anisotropic partial di erential equations. arXiv preprint arXiv:1305.2303 (2013).10.1007/s00220-014-2107-9
[3] L. D'Ambrosio, E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020.10.1016/j.aim.2009.12.017
[4] L. D'Ambrosio, E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Diff. Eqs, 17(9-10) (2012), 935-1000.10.57262/ade/1355702928
[5] L. D'Ambrosio, E. Mitidieri, Liouville theorems for elliptic systems and applications, J. Math. Anal. Appl., 413 (2014), 121-138.10.1016/j.jmaa.2013.11.052
[6] D. Danielli, N. Garofallo, Properties of entire solutions of non-uniformly elliptic equations arising in geometry and in phase transitions. Calc. Var. PDE's, 15 (2002), 451-491.10.1007/s005260100133
[10] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.10.1002/cpa.3160340406
[12] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Commun. Pure Appl. Math., 38 (1985), 679-684.10.1002/cpa.3160380515
[13] L.A. Peletier, J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5(1) (1978), 65-104.