[1] Anber A., Belarbi S., Dahmani Z. (2013), New existence and uniqueness results for fractional Di erential equations, An. St. Univ. Ovidius Con- stanta, 21, n.3, 33-41.10.2478/auom-2013-0040
[2] Cernea A. (2015), Some remarks on a fractional integro-di erential inclu- sion with boundary conditions, An. St. Univ. Ovidius Constanta, 23, n.1, 73-82.10.1515/auom-2015-0006
[3] Mainardi F. (1996), The fundamental solutions for the fractional di usion-wave equation, Appl. Math. Lett., 9, n.6, 23-28.10.1016/0893-9659(96)00089-4
[4] Mainardi F. (1996), Fractional relaxation-oscillation and fractional di usion-wave phenomena, Chaos, Solitons and Fractals, 7, n.9, 1461-1477.10.1016/0960-0779(95)00125-5
[5] Angulo J.M., Ruiz-Medina, M.D., Anh V.V., Greckosch W. (2000), Frac- tional di usion and fractional heat equation, Adv. in Appl. Probab., 32, 1077-1099.10.1239/aap/1013540349
[6] Orsingher E., Beghin L. (2009), Fractional di usion equations and pro- cesses with randomly-varying time, Ann. Probab., 37, n.1, 206-249.10.1214/08-AOP401
[7] Orsingher, E., Beghin, L. (2004), Time-fractional equations and telegraph processes with Brownian time, Probability Theory and Related Fields, 128, 141-160.10.1007/s00440-003-0309-8
[8] Laskin, N. (2003), Fractional Poisson process, Communications in Non- linear Science and Numerical Simulation, , 8, 201-213.10.1016/S1007-5704(03)00037-6
[10] Beghin L., Orsingher E. (2009), Fractional Poisson processes and related planar random motions, Electron. J. Probab., 14, n.61, 1790-1826.10.1214/EJP.v14-675
[11] Meerschaert M. M. Nane, E., Veillaisamy P. (2011), The fractional Pois- son process and the inverse stable subordinator. Electron. J. Probab., 59, 1600-1620.10.1214/EJP.v16-920
[13] Beghin. L. (2012),Fractional relaxation equations and Brownian crossing probabilities of a random boundary. Adv. in Appl. Probab., 44, 479-505.10.1017/S0001867800005693