Have a personal or library account? Click to login
Classification of Filiform Lie Algebras up to dimension 7 Over Finite Fields Cover

Classification of Filiform Lie Algebras up to dimension 7 Over Finite Fields

Open Access
|Sep 2017

References

  1. [1] L. Boza Prieto, F.J. Echarte Reula and J. Núñez Valdés, Classification of complex filiform Lie algebras of dimension 10, Algebras, Groups and Geometries 11 (1994), 253-276.
  2. [2] L. Boza Prieto, E. M. Fedriani Martel and J. Núñez Valdés, A new method for classifying complex filiform Lie algebras, Applied Mathematics and Computation 121: 2-3 (2001), 169-175.10.1016/S0096-3003(99)00270-2
  3. [3] L. Boza, E.M. Fedriani y J. Núñez, Una relacifion entre los pseudo-grafos dirigidos sin aristas repetidas y algunas fialgebras de Lie, Actas del IV Encuentro Andaluz de Matemfiatica Discreta (2005), 99-104.
  4. [4] A. Carriazo, L.M. Fernfiandez and J. Núñez, Combinatorial structures associated with Lie algebras of finite dimension, Linear Algebra and its Applications 389 (2004), 43-61.10.1016/j.laa.2004.02.030
  5. [5] S. Cicalò, W. de Graaf and C. Schneider, Six-dimensional nilpotent Lie algebras, Linear Algebra Appl. 436:1 (2012), 163-189.10.1016/j.laa.2011.06.037
  6. [6] O. J. Falcón, R. M. Falcón and J. Núñez, Isomorphism and isotopism classes of filiform Lie algebras of dimension up to seven, Submitted, 2015.10.1007/s00025-015-0502-y
  7. [7] E. M. Fedriani, Clasificacifion de las fialgebras de Lie filiformes complejas de dimensifion 12. Tesis de Licenciatura. Universidad de Sevilla (Espa~na), 1997.
  8. [8] P. Frè, V. Gili, F. Gargiulo, A. Sorin, H. Rulik, M. Trigiante, Cosmological backgrounds of superstring theory and solvable algebras: Oxidation and branes, Nucl. Phys. B 685 (2004) 3-64.10.1016/j.nuclphysb.2004.02.031
  9. [9] F. Harary, Graph Theory, Addison Wesley, Reading, Mass., 1969. 10.21236/AD0705364
  10. [10] J. Núñez, A. Pacheco y M.T. Villar, Matemfiatica Discreta aplicada al tratamiento de algunos problemas de la Teorfifia de Lie, Actas de las VI Jornadas de Matemfiatica Discreta y Algorfifitmica (VIJMDA), (2008) 485-492.
  11. [11] J. Núñez, A. Pacheco y M. T. Villar, Study of a family of Lie algebras over Z=3Z, International Journal of Applied Mathematics and Statistics, Special volume 7:W10 (2010), 40-45.
  12. [12] C. Schneider, A computer-based approach to the classification of nilpotent Lie algebras, Experiment. Math. 14:2 (2005), 153-160.10.1080/10586458.2005.10128917
  13. 13] V.S. Varadarajan. Lie Groups, Lie Algebras and their Representations. Springer, 1984. 10.1007/978-1-4612-1126-6
  14. [14] M. Vergne, Cohomologie des algébres de Lie nilpotentes. Application fia l'étude de la variété des algebres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970), 81-116.10.24033/bsmf.1695
DOI: https://doi.org/10.1515/auom-2016-0036 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 185 - 204
Submitted on: Jan 1, 2015
|
Accepted on: Apr 1, 2015
|
Published on: Sep 21, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Óscar J. Falcón, Raúl M. Falcón, Juan Núñez, Ana M. Pacheco, M. Trinidad Villar, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.