Have a personal or library account? Click to login
Closed orders and closed graphs Cover

References

  1. [1] K.S. Booth, G.S. Lucker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13(1976), 335-379.10.1016/S0022-0000(76)80045-1
  2. [2] D.A. Cox, A. Erskine, On closed graphs, Ars Combinatoria, to appear, preprint available at arXiv:1306.5149v1 [math.CO].
  3. [3] M. Crupi, G. Rinaldo, Binomial edge ideals with quadratic Gröbner bases, The Elec. J. of Comb. 8, P#211 (2011), 1-13.10.37236/698
  4. [4] M. Crupi, G. Rinaldo, Closed graphs are proper interval graphs, An.St Univ. Ovidius Constantia, 22(3) (2014), 37-44.10.2478/auom-2014-0048
  5. [5] X. Deng, P. Hell, J. Huang, Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs, SIAM J. Comput., 25(2) (1996), 390-403.10.1137/S0097539792269095
  6. [6] F. Gardi, The Roberts characterization of proper and unit interval graphs, Discr. Math., 307(22) (2007), 2906-2908.10.1016/j.disc.2006.04.043
  7. [7] M.C. Golumbic, Algorithm Graph Theory and Perfect graphs. Academic Press, New York, N.Y., 1980.10.1016/B978-0-12-289260-8.50010-8
  8. [8] P.C. Gilmore, A.J. Ho_man, A characterization of comparability graphs and of interval graphs, Canad. J. Math., 16 (1964), 539-548.10.4153/CJM-1964-055-5
  9. [9] V. Ene, J. Herzog, T. Hibi, Cohen-Macaulay binomial edge ideals, Nagoya Math. J. ,204 (2011), 57-68.10.1215/00277630-1431831
  10. [10] M. Habib, R. McConnel C. Paul, L. Viennot, Lex-BFS and partition re- _nement, with applications to transitive orientation, interval graph recognition, and consecutive one testing, Theoret. Comput. Sci., 234 (2000), 59-84.10.1016/S0304-3975(97)00241-7
  11. [11] P. Heggernes, D. Meister, C. Papadopoulos, A new representation of proper interval graphs with an application to clique-width, DIMAP Workshop on Algorithmic Graph Theory 2009, Electron. Notes Discrete Math., 32, (2009), 27-34.10.1016/j.endm.2009.02.005
  12. [12] J. Herzog, T. Hibi, F. Hreinsdottir, T. Kahle, J. Rauh, Binomial edge ideals and conditional independence statements, Adv. in Appl. Math., 45 (2010), 317-333.10.1016/j.aam.2010.01.003
  13. [13] P. J. Looges, S. Olariu, Optimal greedy algorithms for indi_erence graphs, Comput. Math. Appl., 25 (1993), 15-25.10.1016/0898-1221(93)90308-I
  14. [14] K. Matsuda, Weakly closed graphs and F-purity of binomial edge ideals, preprint available at arXiv:1209.4300v1 [Math:AC].
  15. [15] S. Olariu, An optimal greedy euristic to color interval grphs graphs, Inform. Process. Lett., 31 (1991), 21-25.10.1016/0020-0190(91)90245-D
  16. [16] B.S. Panda, S.K. Das, A linear time recognition algorithm for proper interval graphs, Inform. Process. Lett., 87 (2003), 153-161.10.1016/S0020-0190(03)00298-9
  17. [17] F.S. Roberts, Graph theory and its application to problem of society, SIAM Press, Philadelphia (PA), 1978.10.1137/1.9781611970401
DOI: https://doi.org/10.1515/auom-2016-0034 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 159 - 167
Submitted on: Sep 16, 2014
Accepted on: Mar 2, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Marilena Crupi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.