Have a personal or library account? Click to login
Computing abelian subalgebras for linear algebras of upper-triangular matrices from an algorithmic perspective Cover

Computing abelian subalgebras for linear algebras of upper-triangular matrices from an algorithmic perspective

Open Access
|Sep 2017

References

  1. [1] L. Andrianopoli, R. D'Auria, S. Ferrara, P. Frè, M. Trigiante, R-R scalars, U-duality and solvable Lie algebras. Nucl. Phys. B 496 617-629 (1997). 10.1016/S0550-3213(97)00220-4
  2. [2] J.C. Benjumea, F.J. Echarte, J. Núñez and A.F. Tenorio, An Obstruction to Represent Abelian Lie Algebras by Unipotent Matrices. Extracta Math. 19 269- 277 (2004).
  3. [3] J.C. Benjumea, J. Núñez and A.F. Tenorio, The Maximal Abelian Dimension of Linear Algebras formed by Strictly Upper Triangular Matrices, Theor. Math. Phys. 152 1225-1233 (2007).10.1007/s11232-007-0107-z
  4. [4] D. Burde and M. Ceballos, Abelian ideals of maximal dimension for solvable Lie algebras. J. Lie Theory 22 741-756 (2012).
  5. [5] R. Campoamor-Stursberg, Number of missing label operators and upper bounds for dimensions of maximal Lie subalgebras. Acta Phys. Polon. B 37 2745-2760 (2006).
  6. [6] C. Caranti, S. Mattarei and F. Newman, Graded Lie algebras of maximal class. Trans. Amer. Math. Soc. 349 4021-4051 (1997).10.1090/S0002-9947-97-02005-9
  7. [7] M. Ceballos, J. Núñez and A.F. Tenorio, The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices. An. St. Univ. Ovidius Constanta 16 59-66 (2008).
  8. [8] M. Ceballos, J. Núñez and A.F. Tenorio, Algorithic method to obtain abelian subalgebras and ideals in Lie algebras. Int. J. Comput. Math. 89 1388-1411 (2012).10.1080/00207160.2012.688112
  9. [9] P. Frè, Solvable Lie algebras, BPS black holes and supergravity gaugings. Fortschr. Phys. 47 173-181 (1999).10.1002/(SICI)1521-3978(199901)47:1/3<;173::AID-PROP173>3.0.CO;2-O
  10. [10] N. Jacobson, Schur's Theorem on commutative matrices. Bull. Amer. Math. Soc. 50 431-436 (1944).10.1090/S0002-9904-1944-08169-X
  11. [11] I. Schur, Zur Theorie vertauschbarer Matrizen. J. Reine. Angew. Mathematik 130 66-76 (1905).10.1515/crll.1905.130.66
  12. [12] A.F. Tenorio, Solvable Lie algebras and maximal abelian dimensions. Acta Math. Univ. Comenian. (N.S.) 77 141-145 (2008).
  13. [13] J.-L. Thiffeault and P.J. Morrison, Classi_cation and Casimir invariants of Lie- Poisson brackets. Phys. D 136 205-244 (2000).10.1016/S0167-2789(99)00155-4
  14. [14] V.S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Springer, New York (1984).10.1007/978-1-4612-1126-6
DOI: https://doi.org/10.1515/auom-2016-0032 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 137 - 147
Submitted on: Sep 16, 2014
Accepted on: Feb 16, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Manuel Ceballos, Juan Núñez, Ángel F. Tenorio, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.