Have a personal or library account? Click to login
A local minimum theorem and critical nonlinearities Cover

References

  1. [1] A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.10.1006/jfan.1994.1078
  2. [2] G. Bonanno, G. Barletta and D. O'Regan, A variational approach to multiplicity results for boundary-value problems on the real line, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 13-29.10.1017/S0308210513001200
  3. [3] G. Bonanno, A critical point theorem via the Ekeland variational princi- ple, Nonlinear Anal. 75 (2012), 2992-3007.10.1016/j.na.2011.12.003
  4. [4] G. Bonanno, Relations between the mountain pass theorem and local min- ima, Adv. Nonlinear Anal. 1 (2012), 205-220.10.1515/anona-2012-0003
  5. [5] G. Bonanno and P. Candito, Non-differentiable functionals and applica- tions to elliptic problems with discontinuous nonlinearities, J. Differential Equations 244 (2008), 3031-3059.10.1016/j.jde.2008.02.025
  6. [6] G. Bonanno and G. D'Aguì, Critical nonlinearities for elliptic Dirichlet problems, Dynam. Systems and Appl. 22 (2013), 411-418.
  7. [7] G. Bonanno and G. D'Aguì, A critical point theorem and existence results for a nonlinear boundary value problem, Nonlinear Anal. 72 (2010), 1977-1982.10.1016/j.na.2009.09.039
  8. [8] H. Brézis and E. Lieb, A relation between pointwise convergence of func- tions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.10.1090/S0002-9939-1983-0699419-3
  9. [9] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equa- tions involving critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983), 437-477.10.1002/cpa.3160360405
  10. [10] J. Chabrowski, Variational methods for potential operator equations, de Gruyter, Berlin, 1997.10.1515/9783110809374
  11. [11] S. I. Pohozaev, Eigenfunctions of the equation ffu + fff(u) = 0, Soviet Math. Doklady 6 (1965), 1408-1411.
  12. [12] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.10.1016/S0377-0427(99)00269-1
  13. [13] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1996.10.1007/978-3-662-03212-1
  14. [14] M. Willem, Minimax theorems, Birkhäuser, Berlin, 1996.10.1007/978-1-4612-4146-1
DOI: https://doi.org/10.1515/auom-2016-0028 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 67 - 86
Submitted on: Apr 20, 2015
Accepted on: May 18, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Gabriele Bonanno, Giuseppina D’Aguì, Donal O’Regan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.