Have a personal or library account? Click to login
Evolution of solutions for dipolar bodies in Thermoelasticity without energy dissipation Cover

Evolution of solutions for dipolar bodies in Thermoelasticity without energy dissipation

By: Marin Marin and  Ibrahim Abbas  
Open Access
|Sep 2017

References

  1. [1] D.S. Chandrasekharaiah, Hyperbolic Thermoelasticity: A Review of Recent Literature, Appl. Mech. Rev., 51: 705-729, 1998.10.1115/1.3098984
  2. [2] D.S. Chandrasekharaiah, A Note on the Uniqueness of Solution in the Linear Theory of Thermoelasticity Without Energy Dissipation, J. Elas- ticity, 43: 279-283, 1996.10.1007/BF00042504
  3. [3] S. Chirita, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylinder, J. Thermal Stresses, 18: 421-436, 1995.10.1080/01495739508946311
  4. [4] M. Ciarletta, A theory of micropolar thermoelasticity without energy dissipation, J. Thermal Stresses, 22: 581-594, 1999.10.1080/014957399280760
  5. [5] C. Flaut, D. Savin, Some examples of division symbol algebras of degree 3 and 5, Carpathian Journal of Mathematics, 31(2): 197- 204, 2015.10.37193/CJM.2015.02.07
  6. [6] J.N. Flavin, R.J. Knops, Some Spatial Decay Estimates in Continuum Dynamics, J. Elasticity, 17: 249-264, 1987.10.1007/BF00049455
  7. [7] A.E. Green, P.M. Naghdi, Thermoelasticity Without Energy Dissipation, J. Elasticity, 31: 189-208, 1993.10.1007/BF00044969
  8. [8] A.E. Green, P.M. Naghdi, On Thermodynamics and the Nature of the Second Law, Proc. Roy. Soc. London A, 357: 253-270, 1977.10.1098/rspa.1977.0166
  9. [9] G. Groza, M. Jianu, N. Pop, Infinitely differentiable functions represented into Newton interpolating series, Carpathian Journal of Mathematics, 30(3): 309-316, 2014.10.37193/CJM.2014.03.13
  10. [10] L. Harabagiu, O. Simionescu-Panait, Propagation of inhomogeneous plane waves in isotropic solid crystals, Ann. Sci. Univ. Ovidius Constanta, 23 (3): 55-64, 201510.1515/auom-2015-0047
  11. [11] D. Iesan, Thermal effects in orthotropic porous elastic beams, ZAMP, 60: 138-153, 2009.10.1007/s00033-008-7144-9
  12. [12] R. Kumar, Wave propagation in a microstretch thermoelastic diffusion solid, Ann. Sci. Univ. Ovidius Constanta, 23 (1): 127-169, 2015.10.1515/auom-2015-0010
  13. [13] M. Marin, On the minimum principle for dipolar materials with stretch, Nonlinear Analysis: Real World Applications, 10(3): 1572-1578, 200910.1016/j.nonrwa.2008.02.001
  14. [14] M. Marin, G. Stan, Weak solutions in Elasticity of dipolar bodies with stretch, Carpathian Journal of Mathematics, 29(1): 33-40, 2013.10.37193/CJM.2013.01.12
  15. [15] M. Marin, R.P. Agarwal, S.R. Mahmoud, Modeling a microstretch thermoelastic body with two temperature, Abstr. Appl. Analysis, 2013: 1-7, 2031.10.1155/2013/583464
  16. [16] M. Marin, O. Florea, On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies, Ann. Sci. Univ. Ovidius Constanta, 22 (1): 169-188, 2014.10.2478/auom-2014-0014
  17. [17] R.D. Mindlin, Microstructure in linear Elasticity, Arch. Rational Mech. Anal., 16, 51-77, 196410.1007/BF00248490
  18. [18] L. Nappa, Spatial Decay Estimates for the Evolution Equations of Thermoelasticity Without Energy Dissipation, J. Thermal Stresses, 21: 581-592, 1998.10.1080/01495739808956164
  19. [19] R. Quintanilla, On Existence in Thermoelasticity Without Energy Dissipation, J. Thermal Stresses, 25: 195-202, 2002.10.1080/014957302753384423
  20. [20] M. Marin, An evolutionary equation in thermoelasticity of dipolar bodies, Journal of Mathematical Physics, vol. 40 (3), 1391-1399, 199910.1063/1.532809
  21. [21] M. Marin, R.P. Agarwal, S. R. Mahmoud, Nonsimple material problems addressed by the Lagrange's identity, Boundary Value Problems, vol. 2013, 1-14, 2013 art. no. 135.10.1186/1687-2770-2013-135
DOI: https://doi.org/10.1515/auom-2016-0019 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 57 - 82
Submitted on: Feb 6, 2015
Accepted on: Feb 10, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Marin Marin, Ibrahim Abbas, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.