Have a personal or library account? Click to login
Inversion of Weinstein intertwining operator and its dual using Weinstein wavelets Cover

Inversion of Weinstein intertwining operator and its dual using Weinstein wavelets

Open Access
|Sep 2017

References

  1. [1] I. A. Aliev and B. Rubin, Parabolic potentials and wavelet transform with the generalized translation, Studia Math. 145 (2001) Nr1, p. 1-16.10.4064/sm145-1-1
  2. [2] H. Ben Mohamed, N. Bettaibi and S. H. Jah, Sobolev type spaces associated with the Weinstein operator, Int. Journal of Math. Analysis, Vol. 5, Nr. 28, (2011), p. 1353-1373.
  3. [3] H. Ben Mohamed, B. Ghribi, Weinstein-Sobolev spaces of exponential type and applications. To appear in Acta Mathematica Sinica, English Series (2012)p. 1-18.10.1007/s10114-012-0042-2
  4. [4] Z. Ben Nahia, Fonctions harmoniques et proprietés de la moyenne as- sociées á l'opérateur de Weinstein, Thése 3éme cycle Maths. (1995) Department of Mathematics Faculty of Sciences of Tunis. Tunisia.
  5. [5] Z. Ben Nahia and N. Ben Salem, Spherical harmonics and applications associated with the Weinstein operator, \ Proceedings " de la Conférence Internationale de Théorie de Potentiel, I. C. P. T. 94, tenue á Kouty ( en République Tchéque ) du 13-20 Août 1994.
  6. [6] Z. Ben Nahia and N. Ben Salem, On a mean value property associated with the Weinstein operator, "Proceedings" de la Conférence Internationale de Théorie de Potentiel, I. C. P. T. 94, tenue á Kouty ( en République Tchéque ) du 13-20 Ao^ut 1994.
  7. [7] M. Brelot, Equation de Weinstein et potentiels de Marcel Riesz, Lecture Notes in Mathematics 681, Séminaire de Théorie de Potentiel Paris, No 3, 1978, 18-38.10.1007/BFb0065866
  8. [8] C. Chettaoui and K. Trimeche, Bochner-Hecke theorems for the Weinstein transform and application, fract. cal. Appl. Anal. 13(3) (2010) 261-280.
  9. [9] I. A. Kipriyanov, Singular Elliptic Boundary Value Problems, Nauka, Fizmatlit, 1997 (in Russian).
  10. [10] T. H. Koornwinder, The continuous wavelet transform, in wavelets. An elementury treatment of theory and applications, T. H. Koornwinder, ed., World Scientific, (1993).10.1142/2017
  11. [11] J. Löfström and J. Peetre, Approximation theorems connected with gen- eralized translations Math. Ann. Nr 181 (1969), p. 255-268.10.1007/BF01350664
  12. [12] H. Mejjaoli, Heat Equations Associated with Weinstein Operator and Ap- plications, Journal of Function Spaces and Applications, Volume 2013, Article ID 723976, 13 pages.10.1155/2013/723976
  13. [13] H. Mejjaoli and A. O. A. Salem, Weinstein Gabor Transform and Applications, Adv. in Pure Math. 2 (2012) 203-210.10.4236/apm.2012.23029
  14. [14] K. Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C. R. Acad. Sci. Paris Sér. I303 (1986), p. 15-18.
  15. [15] K. Triméche, Generalized Wavelet and Hypergroups, Gordon and Breach, New York, 1997.10.1007/978-0-8176-4348-5_12
  16. [16] K. Triméche, Generalized harmonic analysis and wavelet packets, Gordon and Breach Science Publishers, 2001.10.1201/9781482283174
DOI: https://doi.org/10.1515/auom-2016-0016 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 289 - 307
Submitted on: Apr 8, 2014
Accepted on: Oct 20, 2014
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Abdessalem Gasmi, Hassen Ben Mohamed, Néji Bettaibi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.