Have a personal or library account? Click to login
Positive solutions of nth-order impulsive differential equations with integral boundary conditions Cover

Positive solutions of nth-order impulsive differential equations with integral boundary conditions

Open Access
|Sep 2017

References

  1. [1] B. Ahmad, A. Alsaedi and B. S. Alghamdi, Analytic approximation of so- lutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl. 9 (2008) 1727-1740.10.1016/j.nonrwa.2007.05.005
  2. [2] B. Ahmad and A. Alsaedi, Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions, Nonlinear Anal. Real World Appl. 10 (2009) 358-367.10.1016/j.nonrwa.2007.09.004
  3. [3] B. Ahmad and S. K. Ntouyas, Boundary value problems for n-th or- der differential inclusions with four-point integral boundary conditions, Opuscula Math. 32 (2012) 205-226.10.7494/OpMath.2012.32.2.205
  4. [4] B. Ahmad and S. K. Ntouyas, A study of higher-order nonlinear ordinary differential equations with four-point nonlocal integral boundary conditions, J. Appl. Math. Comput. 39 (2012) 97-108.10.1007/s12190-011-0513-0
  5. [5] M. Akhmet, Principles of Discontinuous Dynamical Systems, Springer, New York, 2010.10.1007/978-1-4419-6581-3
  6. [6] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, New York, USA, 2006.10.1155/9789775945501
  7. [7] M. Benchohra, F. Berhoun and J. J. Nieto, Existence results for impulsive boundary value problem with integral boundary conditions, Dynam. Systems Appl. 19 (2010) 585-597.
  8. [8] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. 70 (2009) 364-371.10.1016/j.na.2007.12.007
  9. [9] J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math. 21 (1963) 155-160.10.1090/qam/160437
  10. [10] R. Yu. Chegis, Numerical solution of a heat conduction problem with an integral condition, Litovsk. Mat. Sb. 24 (1984) 209-215.
  11. [11] W. Ding and Y. Wang, New result for a class of impulsive differential equation with integral boundary conditions, Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1095-1105.10.1016/j.cnsns.2012.09.021
  12. [12] M. Feng, X. Zhang and X. Yang, Positive solutions of nth-order non- linear impulsive differential equation with nonlocal boundary conditions, Bound. Value Probl. Art. ID 456426 (2011) 19 pp.10.1155/2011/456426
  13. [13] M. Feng, Multiple positive solutions of four-order impulsive differential equations with integral boundary conditions and one-dimensional p-Laplacian, Bound. Value Probl. Article ID 654871 (2011) 26 pp.10.1155/2011/654871
  14. [14] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, Mass, USA, 1988.
  15. [15] X. Hao, L. Liuand Y. Wu, Positive solutions for second order impulsive differential equations with integral boundary conditions, Commun. Non- linear Sci. Numer. Simul. 16 (2011) 101-111.10.1016/j.cnsns.2010.04.007
  16. [16] N. I. Ionkin, The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differencial'nye Uravnenija 13 (1977) 294-304.
  17. [17] M. Jia and X. P. Liu, Multiple nonnegative solutions to boundary value problems for a class of second-order impulsive differential equations with integral boundary conditions, J. Jilin Univ. Sci. 49 (2011) 594-600.
  18. [18] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.10.1142/0906
  19. [19] Y. Li and F. Li, Sign-changing solutions to second-order integral boundary value problems, Nonlinear Anal. 69 (2008) 1179-1187.10.1016/j.na.2007.06.024
  20. [20] Y. H. Li, H. Y. Zhang and Z. L. Zhang, Existence of three positive solutions to a singular integral boundary value problem for systems of non- linear nth-order ordinary differential equations, Appl. Math. J. Chinese Univ. Ser. A 27 (2012) 168-174.
  21. [21] Z. W. Lv, J. Liang and T. J. Xiao, Multiple positive solutions for second order impulsive boundary value problems in Banach spaces, Electron. J. Qual. Theory Differ. Equ. 28 (2010) 15 pp.
  22. [22] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.10.1142/2892
  23. [23] Z. Yang, Existence of nontrivial solutions for a nonlinear Sturm-Lioville problem with integral boundary conditions, Nonlinear Anal. 68 (2008) 216-225.10.1016/j.na.2006.10.044
  24. [24] X. Zhang, M. Feng and W. Ge, Existence results for nonlinear boundary- value problems with integral conditions in Banach spaces, Nonlinear Anal. 69 (2008) 3310-3321.10.1016/j.na.2007.09.020
  25. [25] X. Zhang, X. Yang and W. Ge, Positive solutions of nth-order impulsive boundary value problems with integral boundary conditions in Banach spaces, Nonlinear Anal. 71 (2009) 5930-5945.10.1016/j.na.2009.05.016
  26. [26] X. Zhang, M. Feng and W. Ge, Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces, J. Comput. Appl. Math. 233 (2010) 1915-1926.10.1016/j.cam.2009.07.060
DOI: https://doi.org/10.1515/auom-2016-0014 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 243 - 261
Submitted on: Jun 12, 2013
Accepted on: Mar 3, 2014
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Fatma Tokmak Fen, Ilkay Yaslan Karaca, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.