Have a personal or library account? Click to login
Drift perturbation’s influence on traveling wave speed in KPP-Fisher system Cover
By: Fathi Dkhil and  Bechir Mannoubi  
Open Access
|Sep 2017

References

  1. [1] D.G. Anderson, H.F. Weinberg, “multidimensional nonlinear diffusions arising in population genetics," Adv.Math.30:(7978), 33-76.10.1016/0001-8708(78)90130-5
  2. [2] F. Dkhil, A. Stevens, “Traveling wave speeds in rapidly oscillating media," Discrete and continuous dynamical system 25, no.1 (2009), 89-108.10.3934/dcds.2009.25.89
  3. [3] F. Dkhil, A. Stevens, “Traveling wave speeds of nonlocally perturbed re- action-diffusion equations,"Asymptotic Analysis 46, (2006), 81-91.10.3233/ASY-2006-730
  4. [4] S. Heinze, “Wave solutions to reaction-diffusion systems in perfored do- mains," Z. Anal. Anwendungen, 20, no.3, (2001), 661-676.10.4171/ZAA/1037
  5. [5] S. Heinze, G. Papanicolaou, A. Stevens, “Variational principle for prop- agation speeds in inhomogeneous media," SIAM J. Appl. Math. vol. 62, no.1, (2001), 129-148.10.1137/S0036139999361148
  6. [6] J. Gärtner, M.I. Freidlin, “On the propagation of concentration waves in periodic and random media," Soviet. Math. Dokl., 20, (1979), 1282-1286.
  7. [7] K.P. Hadeler, F. Rothe, “Traveling fronts in nonlinear diffusion equations," J. Math. Biol. 2, (1975), 251-263.10.1007/BF00277154
  8. [8] F. Hamel, “Folmules min-max pour les vitesse d'ondes progressive multi- dimensionelles," Ann. Fac. Sci. Toulouse Math. (6), 8, (1999), 259-280.10.5802/afst.932
  9. [9] X. Hou, “On the minimal speed and asymptotics of the wave solutions for the lotka volterra system," Analysis of PDEs (math.AP); Dynamical Systems (math.DS) (2010).
  10. [10] X. Hou, W. Feng, “Traveling waves and their Stability for a Public Goods Game Model," Analysis of PDEs (math.AP) (2009).
  11. [11] A.N. Kolmogorov, I.G. Petrovsky, N.S. Pisknnov “Etude de l'quation de la diffusion avec croissance de la quantit de matire et son application un problme biologique," Bulletin Universit d'Etat Moskou (Bjul.Moskourskogo Gos.Univ), (1937), 1-26.
  12. [12] A.I. Vol'pert, V. Vol'pert, V.A. Vol'pert, “Traveling wave solutions of parabolic systems," Translations of Mathematical Monographs, 140, Providence, RI: American Mathematical Society, (1994).
  13. [13] A. W Leung, X. Hou, W. Feng, “Traveling Wave Solutions for Lotka- Volterra System Re-Visited," Analysis of PDEs (math.AP); Spectral Theory (math.SP) (2009).
  14. [14] J. Xin, “Front propagation in heterogeneous media." SIAM Rev., 42, (2000), 161-230.10.1137/S0036144599364296
  15. [15] J. Xin, “Existence of planar ame fronts in convective-diffusive periodic media," Arch. Ration. Mech. Anal., 121, (1992), 205-233.10.1007/BF00410613
  16. [16] J. Xin, “Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity," J. Dynam. Differential Equations, 3, (1991), 541-573.10.1007/BF01049099
DOI: https://doi.org/10.1515/auom-2016-0010 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 189 - 200
Submitted on: Feb 17, 2014
Accepted on: May 12, 2014
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Fathi Dkhil, Bechir Mannoubi, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.