Have a personal or library account? Click to login
On the first Zagreb index and multiplicative Zagreb coindices of graphs Cover

References

  1. [1] N. Akgünş, A. S. Çevik, A new bound of radius with irregularity index, Applied Mathematics and Computation 219 (11) (2013) 5750{5753.10.1016/j.amc.2012.11.081
  2. [2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.10.1007/978-1-349-03521-2
  3. [3] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57{66.10.1016/j.disc.2004.04.007
  4. [4] K. C. Das, On geometrical-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem. 64 (3) (2010) 619{630.
  5. [5] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2) (2010) 433{440.
  6. [6] K. C. Das, A. Yurttaş, M. Togan, I. N. Cangül, A. S. Çevik, The multiplicative Zagreb indices of graph operations, Journal of Inequalities and Applications, 2013, 2013: 90.10.1186/1029-242X-2013-90
  7. [7] K. C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514{521.10.1007/s10910-008-9475-3
  8. [8] K. C. Das, N. Trinajstić, Relationship between the eccentric connectivity index and Zagreb indices, Comput. Math. Appl. 62 (2011) 1758{1764.10.1016/j.camwa.2011.06.017
  9. [9] K. C. Das, I. Gutman, B. Horoldagva, Comparison between Zagreb indices and Zagreb coindices, MATCH Commun. Math. Comput. Chem. 68 (1) (2012) 189{198.
  10. [10] K. C. Das, N. Trinajstić, Comparison between geometric-arithmetic indices, Croat. Chem. Acta 85 (3) (2012) 353{357.10.5562/cca2005
  11. [11] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217{230.
  12. [12] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Ineq. 5 (2011) 21-31.10.7153/jmi-05-03
  13. [13] B. Horoldagva, K. C. Das, On comparing Zagreb indices of graphs, Hacettepe Journal of Mathematics and Statistics 41 (2) (2012) 223{230.
  14. [14] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternate hydrocarbons, Chem. Phys. Lett. 17 (1972) 535{538.10.1016/0009-2614(72)85099-1
  15. [15] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theorey and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399.10.1063/1.430994
  16. [16] H. Hua, K. C. Das, The relationship between eccentric connectivity index and Zagreb indices, Discrete Applied Math. 161 (2013) 2480{2491.10.1016/j.dam.2013.05.034
  17. [17] H. Kober, On the arithmetic and geometric means and the Hölder inequality, Proc. Am. Math. Soc. 59 (1958) 452{459.10.1090/S0002-9939-1958-0093564-7
  18. [18] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees [in:] Novel molecular structure descriptors- Theory and applications I, I. Gutman, B. Furtula, (eds.), pp. 73{100. Univ. Kragujevac, Kragujevac, 2010.
  19. [19] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010) 359{372.
  20. [20] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley- VCH, Weinheim, 2000.10.1002/9783527613106
  21. [21] K. Xu, K. C. Das, K. Tang, On the multiplicative Zagreb coindex of graphs, Opuscula Math. 33 (1) (2013) 191{204.10.7494/OpMath.2013.33.1.191
DOI: https://doi.org/10.1515/auom-2016-0008 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 153 - 176
Submitted on: Mar 5, 2014
Accepted on: Feb 10, 2014
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Kinkar Ch. Das, Nihat Akgunes, Muge Togan, Aysun Yurttas, I. Naci Cangul, A. Sinan Cevik, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.