Have a personal or library account? Click to login

References

  1. [1] S.B. Pope, PDF methods for turbulent reactive ows, Prog. Energy Combust. Sci. 11(2) (1985) 119{192.10.1016/0360-1285(85)90002-4
  2. [2] R.O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, New York, 2003.10.1017/CBO9780511610103
  3. [3] N. Suciu. Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69 (2014) 114-133.10.1016/j.advwatres.2014.04.002
  4. [4] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.10.1017/CBO9780511840531
  5. [5] D.C. Haworth, Progress in probability density function methods for turbulent reacting ows, Prog. Energy Combust. Sci., 36 (2010) 168-259.10.1016/j.pecs.2009.09.003
  6. [6] A.Y. Klimenko, R.W. Bilger, Conditional moment closure for turbulent combustion, Progr. Energ. Combust. Sci. 25 (1999) 595{68710.1016/S0360-1285(99)00006-4
  7. [7] N. Suciu, F.A. Radu, S. Attinger, L. Schüler, Knabner, A Fokker-Planck approach for probability distributions of species concentrations transported in heterogeneous media, J. Comput. Appl. Math. (2014), in press (doi:10.1016/j.cam.2015.01.030).
  8. [8] D.W. Meyer, P. Jenny, H.A. Tchelepi, A joint velocity-concentration PDF method for tracer ow in heterogeneous porous media, Water Resour. Res., 46 (2010) W12522.10.1029/2010WR009450
  9. [9] R. W. Bilger, The Structure of Diffusion Flames, Combust. Sci. Tech. 13 (1976) 155-170.10.1080/00102207608946733
  10. [10] S. Attinger, M. Dentz, H. Kinzelbach, W. Kinzelbach, Temporal behavior of a solute cloud in a chemically heterogeneous porous medium, J. Fluid Mech. 386 (1999) 77-104.10.1017/S0022112099004334
  11. [11] N. Suciu, C. Vamos, J. Vanderborght, H. Hardelauf, H. Vereecken, Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res. 42 (2006) W04409.10.1029/2005WR004546
  12. [12] C. Vamoș, N. Suciu, H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comp. Phys., 186 (2003) 527-544.10.1016/S0021-9991(03)00073-1
  13. [13] F. A. Radu, N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C-H. Park, S. Attinger, Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study, Adv. Water Resour. 34 (2011) 47-61.10.1016/j.advwatres.2010.09.012
  14. [14] N. Suciu, F.A. Radu, A. Prechtel, F. Brunner, P. Knabner, A coupled finite element-global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity, J. Comput. Appl. Math. 246 (2013) 27-37.10.1016/j.cam.2012.06.027
  15. [15] C. Vamoș, M. Crăciun, Separation of components from a scale mixture of Gaussian white noises, Phys. Rev. E 81 (2010) 051125.10.1103/PhysRevE.81.051125
  16. [16] C. Vamoș, M. Crăciun, Automatic Trend Estimation, Springer, Dortrecht, (2012).10.1007/978-94-007-4825-5
DOI: https://doi.org/10.1515/auom-2015-0055 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 187 - 208
Submitted on: Dec 1, 2014
Accepted on: Feb 1, 2015
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2017 N. Suciu, L. Schüler, S. Attinger, C. Vamoș, P. Knabner, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.