[2] A. Beck and L. Tetruashvili. On the Convergence of Block Coordinate Descent Type Methods. SIAM Journal on Optimization, 23(4):2037-2060, 2013.10.1137/120887679
[5] C. Byrne and Y. Censor. Proximity Function Minimization Using Multiple Bregman Projections, with Applications to Split Feasibility and Kullback-Leibler Distance Minimization. Annals of Operations Research, 105(1-4):77-98, 2001.10.1023/A:1013349430987
[6] J.-F. Cai, S. Osher, and Z. Shen. Convergence of the Linearized Bregman Iteration for l1-norm Minimization. Mathematics of Computation, 78(268):2127-2136, 2009.10.1090/S0025-5718-09-02242-X
[7] Y. Censor and T. Elfving. A multiprojection algorithm using Bregman projections in a product space. Numerical Algorithms, 8(2):221-239, 1994.10.1007/BF02142692
[10] P.C. Hansen and M. Saxild-Hansen. {AIR} tools a {MATLAB} package of algebraic iterative reconstruction methods. Journal of Computational and Applied Mathematics, 236(8):2167 - 2178, 2012. Inverse Problems: Computation and Applications.10.1016/j.cam.2011.09.039
[11] D. A. Lorenz, F. Schöpfer, and S. Wenger. The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations. SIAM Journal on Imaging Science, 7(2):1237-1262, 2014.
[13] Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35, January 1992.10.1007/BF00939948
[14] Y. Nesterov. Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems. SIAM Journal on Optimization, 22(2):341-362, 2012.10.1137/100802001
[15] S. Petra and C. Schnörr. Average Case Recovery Analysis of Tomographic Compressive Sensing. Linear Algebra and its Applications, 441:168-198, 2014. Special issue on Sparse Approximate Solution of Linear Systems.10.1016/j.laa.2013.06.034
[16] Peter R. and Martin T. Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function. Mathematical Programming, 144(1-2):1-38, 2014.10.1007/s10107-012-0614-z
[20] T. Strohmer and R. Vershynin. A Randomized Kaczmarz Algorithm with Exponential Convergence. Journal of Fourier Analysis and Applications, 15:262-278, 2009.10.1007/s00041-008-9030-4
[21] P. Tseng. Convergence and Error Bound for Perturbation of Linear Programs. Computational Optimization and Applications, 13(1-3):221-230, 1999.10.1023/A:1008625410523
[22] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman Iterative Algorithms for l1-Minimization with Applications to Compressed Sensing. SIAM Journal on Imaging Sciences, pages 143-168, 2008.10.1137/070703983