Have a personal or library account? Click to login

References

  1. [1] M.J. Baptist, V. Babovic, J. Rodriguez Uthurburu, M. Keijzer, R.E. Uittenbogaard, A. Mynett and A. Verwey, On inducing equations for vegetation resistance, Journal of Hydraulic Research, 45:4(2007), pp. 435-450.10.1080/00221686.2007.9521778
  2. [2] F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography, Comm. Math. Sci. 2: 3(2004), pp. 359-389.10.4310/CMS.2004.v2.n3.a2
  3. [3] F. Bouchut, Nonlinear Stabilty of Finite Volume Methodes for Hyperbolic Conservattion Laws, Birkhauser, 2004.10.1007/b93802
  4. [4] A. Chinnayya, A.Y. LeRoux, N. Seguin, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon, International Journal on Finite Volume (electronic), volume 1(1), pp 1-33, 2004.
  5. [5] S.M. Hassanizadeh, W.G. Gray, Mechanics and thermodynamics of multiphase ow in porous media including interphase boundaries, Adv. Water. Resources, 13:4(1990), pp. 169-186.10.1016/0309-1708(90)90040-B
  6. [6] M.R. Hoffmann, Application of a simple space-time averaged porous media model for ow in densely vegetated channels Journal of Porous Media, 7:3 (2004), pp. 479-489.10.1615/JPorMedia.v7.i3.30
  7. [7] S. Ion, D. Marinescu, S.G. Cruceanu, Overland ow in the presence of vegetation, Technical report, www.ima.ro/PNIIprogramme/ASPABIR/pub/reportismmaaspabir2013.pdf
  8. [8] C.S. James, A.L. Birkhead, A.A. Jordanova, J.J. O'Sullivan, Flow resistance of emergent vegetation, J. of Hydraulic Res., 42:4(2004), 390-398.10.1080/00221686.2004.9728404
  9. [9] R.J. Lowe, U. Shavit, J.L. Falter, J.R. Koseff, S.G. Monismith, Modeling flow in coral communities with and without waves: A synthesis of porous media and canopy ow approaches, Limnol. Oceanogr., 53:6(2008), pp. 2668-2680.10.4319/lo.2008.53.6.2668
  10. [10] G. Dal Maso, P.G. Le Floch, F. Murat, Definition and weak stabilty of noncoservative product, J. Math. Pures Appl. 74 (1995), 483{458.
  11. [11] H.M. Nepf, Drag, turbulance, and di_usion in ow through emergent vegetation, Water Resource Research, 35: 2(1999), pp. 479-489. Flow in Porous Media I: A Theoretical Derivation of Darcy's Law, Transport in Porous Media 1 (1986), 3-25.10.1007/BF01036523
  12. [12] S. Noelle, N. Pankratz, G. Puppo, J.R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water ows, Journal of Computational Physics, 213 (2006), pp. 474-499.10.1016/j.jcp.2005.08.019
  13. [13] R.L. LeVeque, Finite Volume Methods foe Hyperbolic Problems, Cambridge University Press, 2002.10.1017/CBO9780511791253
  14. [14] U.S. Fjordholm, S. Mishra, E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, Journal of Computational Physics, 230 (2011), pp. 5587-5609.10.1016/j.jcp.2011.03.042
  15. [15] W. Wu, F.D. Shields Jr., S.J. Bennett, S.S.Y. Wang, A depth-averaged two-dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation, 41, 3(2005), pp. 1-15.10.1029/2004WR003730
DOI: https://doi.org/10.1515/auom-2015-0049 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 83 - 96
Submitted on: Nov 1, 2014
Accepted on: Feb 1, 2015
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2017 Stelian Ion, Dorin Marinescu, Anca Veronica Ion, Stefan Gicu Cruceanu, Virgil Iordache, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.