Have a personal or library account? Click to login
Positive solutions for singular nonlocal boundary value problems involving integral conditions with derivative dependence Cover

Positive solutions for singular nonlocal boundary value problems involving integral conditions with derivative dependence

Open Access
|Apr 2017

References

  1. [1] R.P. Agarwal and D.O’Regan, Existence theory for single and multiple solutions to singular positone boundary value problems, Jour. Differential Equations, 175(2001), 393-414.10.1006/jdeq.2001.3975
  2. [2] R.P. Agarwal and D.O’ Regan, A survey of recent results for initial and boundary value problems singular in the dependent variable, Original Re- search Article Handbook of Differential Equations: Ordinary Differential Equations, 1(2000), 1-68.10.1016/S1874-5725(00)80003-6
  3. [3] J.V. Baxley, A singular nonlinear boundary value problem: membrane response of a spherical cap, SIAM J. Appl. Math., 48(1988), 497-505.10.1137/0148028
  4. [4] L.E. Bobisud, J.E. Calvert and W.D. Royalty, Some existence results for singular boundary value problems, Differential Integral Equations, 6 (1993), 553-571.10.57262/die/1370378429
  5. [5] K. Deimling, Nonlinear functional analysis, Springer Verlag, New York, 1985.10.1007/978-3-662-00547-7
  6. [6] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988.
  7. [7] CH. P. Gupta, S. K. Ntouyas and P. CH. Tsamatos, Existence results for m-point boundary value problems, Differential Equations Dynam. Sys- tems, 2(1994), 289-298.
  8. [8] CH. P. Gupta and S. I. Trofimchuk, Solvability of a multi-point boundary value problem and related a priori estimates, Canad. Appl. Math. Quart., 6(1998), 45-60.
  9. [9] L.Hu, Positive solutions for singular boundary value problems involving integral conditions, Boundary Value Problems, 2012(2012), 1-1410.1186/1687-2770-2012-72
  10. [10] V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problems of the first kind for a SturmCLiouville operator in its differential and finite difference aspects, Differ. Equat., 23(1987), 803-810.
  11. [11] V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differ. Equat., 23(1987), 979C987.
  12. [12] G. Infante and J. R. L. Webb, Positive solutions of some nonlocal boundary value problems, Abstr. Appl. Anal., 2003(2003), 1047-1060.10.1155/S1085337503301034
  13. [13] C. Ji, B.Yan, Positive solutions for second-order singular three-poin boundary-value problems with sign-changing nonlinearities, Electronic Journal of Differential Equations, 2010(2010), 1-9.
  14. [14] J. Jiang, L. Liu and Y. Wu, Positive Solutions for Second-Order Singular Semipositone Differential Equations Involving Stieltjes Integral Conditions, Abstract and Applied Analysis, 2012(2012), 1-21.10.1155/2012/696283
  15. [15] G. L. Karakostas and P. CH. Tsamatos, Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal., 19(2002), 109-121.10.12775/TMNA.2002.007
  16. [16] G. L. Karakostas and P. CH. Tsamatos, Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equations, 2002(2002), 1-17.
  17. [17] R. Ma, Existence theorems for a second order m-point boundary value problem, J. Math. Anal. Appl., 211(1997), 545-555.10.1006/jmaa.1997.5416
  18. [18] R. Ma, Positive solutions of a nonlinear m-point boundary value problem, Comput. Math. Appl. 42(2001), 755-765.10.1016/S0898-1221(01)00195-X
  19. [19] D.O’Regan, Existence theory for nonlinear ordinary differential equations, Kluwer Acad. Publ., Dordrecht, 1997.10.1007/978-94-017-1517-1
  20. [20] S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis, 3(1979), 897-904.10.1016/0362-546X(79)90057-9
  21. [21] J. R. L. Webb, Optimal constants in a nonlocal boundary value problem, Nonlinear Anal., 63(2005), 672-685.10.1016/j.na.2005.02.055
  22. [22] J. R. L. Webb and G. Infante, Positive Solutions of Nonlocal Boundary Value Problems: A Unified Approach, Oxford Journals Mathematics & Physical Sciences Journal London Mathematical Society, 74(2006), 673-693.10.1112/S0024610706023179
  23. [23] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type , Topol. Methods Nonlinear Anal. 27 (2006), 91-115.
  24. [24] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differential Equations and Applications, 15(2008), 45-67.10.1007/s00030-007-4067-7
DOI: https://doi.org/10.1515/auom-2015-0042 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 279 - 304
Submitted on: Jun 1, 2014
Accepted on: Jul 1, 2014
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Baoqiang Yan, Donal O’Regan, Ravi P. Agarwal, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.