Have a personal or library account? Click to login
Spectral characterization and Schrödinger operator of space-like submanifolds Cover

Spectral characterization and Schrödinger operator of space-like submanifolds

By: Shichang Shu and  Tianmin Zhu  
Open Access
|Apr 2017

References

  1. [1] K. Akutagawa, On space-like hypersurfaces with constant mean curvature in a de Sitter space, Math. Z., 196 (1987), 13-19.10.1007/BF01179263
  2. [2] H. Alencar, M. do Carmo and A.G. Colares, Stable hypersurfaces with constant scalar curvature, Math. Z., 213 (1993), 117-131.10.1007/BF03025712
  3. [3] J.L. Barbosa, M. do Carmo and J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z., 197 (1988), 123-138.10.1007/BF01161634
  4. [4] J.L. Barbosa and V. Oliker, Stable space-like hypersurfaces with constant mean curvature in Lorentz space, Geometry and global Analysis, Tohoku Univ. Sendai, (1993), 161-164.10.21711/231766361993/rmc44
  5. [5] J.L. Barbosa and V. Oliker, Space-like hypersurfaces with constant mean curvature in Lorentz space, Mat. Contemp, 4 (1993), 27-44.10.21711/231766361993/rmc44
  6. [6] A.A. Barros, A.C. Brasil Jr. and L.A.M. Sousa Jr., A new characterization of submanifolds with parallel mean curvature vector in Sn+p, Kodai Math. J., 27 (2004), 45-56.10.2996/kmj/1085143788
  7. [7] F.E. C Camargo and R.S. B. Chaves and L.A. M. De Sousa Jr, New characterizations of complete spacelike submanifolds in semi-Riemannian space forms, Kodai Math. J., 32 (2009), 209-230.10.2996/kmj/1245982904
  8. [8] Q.-M. Cheng, First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature, Proc. Amer. Math. Soc., 136 (2008), 3309-3318.10.1090/S0002-9939-08-09304-0
  9. [9] S.Y. Cheng and S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204.10.1007/BF01425237
  10. [10] X. Liu and J. Deng, Stable space-like hypersurfaces in the de Sitter space, Archivum Math. (Brno), 40 (2004), 111-117.
  11. [11] J. Marsden and F. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Bull. Am. phys. Soc., 23 (1978), 84-90.
  12. [12] S. Montiel, A characterization of hyperbolic cylinders in the de Sitter space, Tôhoku Math. J., 48 (1996), 23-31.10.2748/tmj/1178225410
  13. [13] W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tôhoku Math. J, 46 (1994), 403-415.10.2748/tmj/1178225720
  14. [14] S. Shu and S. Liu, Complete space-like submanifolds with constant scalar curvature in a de Sitter space, Balkan J. of Geom. Appli., 9 (2004), 82-91.
  15. [15] S. Shu and S. Liu, First eigenvalue of Schrödinger operator of space-like hypersurfaces, Anziam J., 51 (2010), 83-96.10.21914/anziamj.v51i0.1618
  16. [16] S. Stumbles, Hypersurfaces of constant mean extrinsic curvature, Ann. Phys., 133 (1980), 28-5610.1016/0003-4916(81)90240-2
  17. [17] C. Wu, New characterizations of the Clifford tori and the Veronese surface, Arch. Math., 61 (1993) 277-284.10.1007/BF01198725
DOI: https://doi.org/10.1515/auom-2015-0040 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 241 - 257
Submitted on: Nov 1, 2012
|
Accepted on: Sep 1, 2014
|
Published on: Apr 22, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Shichang Shu, Tianmin Zhu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.