Have a personal or library account? Click to login
Common fixed point theorems for generalized contraction involving rational expressions in complex valued metric spaces Cover

Common fixed point theorems for generalized contraction involving rational expressions in complex valued metric spaces

Open Access
|Apr 2017

References

  1. [1] R.P. Agarwal, D. O'Regan, D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Series: Topological Fixed Point Theorems and its Applications, 6, Springer, New York, 2009.10.1007/978-0-387-75818-3_8
  2. [2] M. A. Alghamdi, V. Berinde, N. Shahzad, Fixed points of non-self almost contractions, Carpathian Journal of Mathematics, 30(1)(2014), 7-14.10.37193/CJM.2014.01.02
  3. [3] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization, 3(3) (2011), 243-253.10.1080/01630563.2011.533046
  4. [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3(1922), 133-181.10.4064/fm-3-1-133-181
  5. [5] O. Hadzic, E. Pap, Fixed Point Theory in PM-Spaces, Kluwer Academic, Dordrecht, The Netherlands(2001).
  6. [6] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.10.1016/j.jmaa.2005.03.087
  7. [7] J.L. Kelley, General Topology, Van Nostrand Reinhold, New York(1955).
  8. [8] H.P.A. Kunzi, A note on sequentially compact quasi-pseudo-metric spaces, Monatshefte Math., 95(1983), 219-220.10.1007/BF01351999
  9. [9] M. Telci, B. Fisher, On a fixed point theorem for fuzzy mappings in quasi- metric spaces, Thai J. Math., 2(2003), 1-8.
  10. [10] J.S. Ume, Fixed point theorems in generalizing spaces of quasi metric family and applications, Indian J. Pure App. Math., 33(2002), 1041-1051.
DOI: https://doi.org/10.1515/auom-2015-0035 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 179 - 185
Submitted on: Jun 20, 2013
Accepted on: Oct 24, 2013
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Hemant Kumar Nashine, Brian Fisher, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.