Have a personal or library account? Click to login
Reduced diophantine quadruples with the binary recurrence Gn = AGn–1 – Gn–2 Cover

Reduced diophantine quadruples with the binary recurrence Gn = AGn–1 – Gn–2

Open Access
|Apr 2017

References

  1. [1] M. Alp, N. Irmak, L. Szalay, Balancing Diophantine triples, Acta Univ.
  2. Sapientiae, 4 (2012), 11-19.
  3. [2] Y. Bugeaud, A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc., 135 (2003), 1-10.10.1017/S0305004102006588
  4. [3] R. D. Carmichael, On the Numeric Factors of the Arithmetic Forms _n_ _n; The Annals of Mathematics, Second Series, Vol 15, No. 1/4 (1913-1914), 30-48.10.2307/1967797
  5. [4] A. Dujella, There are only _nitely many Diophantine quintuples, J. Reine Angew. Math., 566 (2004), 183-214.10.1515/crll.2004.003
  6. [5] C. Fuch, F. Luca, L. Szalay, Diophantine triples with values in binary recurrences, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 5 Vol. VII (2008), 579-608.10.2422/2036-2145.2008.4.01
  7. [6] V. E. Hoggat, G. E. Bergum, A problem of Fermat and Fibonacci se- quence, Fibonacci Quart. 15 (1977), 323-330.10.1080/00150517.1977.12430412
  8. [7] N. Irmak, L. Szalay, Diophantine triples and reduced quadruples with bi- nary recurrence un = Aun1 un2, accepted in Glasnik Math.
  9. [8] F. Luca, L. Szalay, Fibonacci Diophantine triples, Glasnik Math., 43 (63) (2008), 253-264.10.3336/gm.43.2.03
  10. [9] F. Luca, L. Szalay, Lucas Diophantine triples, INTEGERS, 9 (2009), 441-457.10.1515/INTEG.2009.037
  11. [10] G. K. Panda, S. S. Rout, A class of recurrent sequences exhibiting some exciting properties of Balancing numbers, World Acad. Sci. Eng. Tech., 61 (2012), 164-166.
  12. [11] L. Szalay, Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem, Portugal. Math., 69 (2012), 213-220.10.4171/PM/1914
DOI: https://doi.org/10.1515/auom-2015-0022 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 23 - 31
Submitted on: Sep 1, 2013
Accepted on: Jun 1, 2014
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Murat Alp, Nurettin Irmak, László Szalay, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.