Have a personal or library account? Click to login
Frames of subspaces in Hilbert spaces with W-metrics Cover

References

  1. [1] P. B. Acosta-Humánez , Galoisian approach to supersymmetric quan- tum mechanics. PhD Thesis, Universitat Politcnica de Catalunya 2009.
  2. [2] P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics: The integrability analysis of the Schrdinger equation by means of differential Galois theory, VDM Verlag Dr Mueller Pub- lishing, 2010.
  3. [3] P. B. Acosta-Humánez, J. J. Morales-Ruiz, J. A. Weil, Galoisian approach to integrability of Schrödinger equation. Reports on Mathemat- ical Physics, 67 (3), (2011), 305-374.10.1016/S0034-4877(11)60019-0
  4. [4] N. Akhiezer, I. Glazman, Theory of linear operators in Hilbert space. Transl. from the Russian. Dover Publications New York, 1993.
  5. [5] T. Ya. Azizov, I. S. Iokhvidov, Linear operators in Hilbert spaces with G-metric. Russ. Math. Surv. 26 (1971), 45-97.10.1070/RM1971v026n04ABEH003982
  6. [6] T. Ya. Azizov and I. S. Iokhvidov , Linear operator in spaces with an indeffnite metric. Pure & Applied Mathematics, AWiley-Intersciences, Chichester, 1989.
  7. [7] J. Bognar, Indeffnite inner product spaces. Springer, Berlin, 1974.10.1007/978-3-642-65567-8
  8. [8] P. G. Casazza, O. Christensen, Weyl Heisenberg Frames for subspaces of L2(R), Proc. Amer. Math. Soc. 129 (2001), 145-154.10.1090/S0002-9939-00-05731-2
  9. [9] P. G. Casazza, G. Kutyniok, Frame of subspaces, arXiv:math/0311384.
  10. [10] O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.10.1007/978-0-8176-8224-8
  11. [11] O. Christensen, T. K. Jensen, An introduction to the theory of bases, frames, and wavelets. Technical University of Denmark, Department of Mathemtics, 1999.
  12. [12] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.10.1063/1.527388
  13. [13] H. Deguang, K. Kornelson, D. Larson , E. Weber, Frames for undergraduates, Student Mathematical Library, A.M.S Providence, 2007.
  14. [14] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.10.1090/S0002-9947-1952-0047179-6
  15. [15] K. Esmeral, O. Ferrer, E. Wagner, Frames in Krein spaces arising from a W-metric, Banach J. Math., Submited April 2013.
  16. [16] K. Esmeral, Marcos en espacios de Krein, Master thesis, Posgrado Conjunto UNAM-UMSNH, 2011.
  17. [17] P. Gávruţa, On the duality of fusion frames. J. Math. Anal. Appl., 333 (2007), 871-879.10.1016/j.jmaa.2006.11.052
  18. [18] J. I. Giribet, A. Maestripieri, F. Martníez Pería and P. Massey, On a family of frames for Krein spaces, arXiv:1112.1632v1.
  19. [19] E. Christofer, D. Walnut., Continous and discrete wavelet transforms, SIAM. 31 (1989), 628-666.10.1137/1031129
  20. [20] M. Reed, S. Barry, Methods of modern mathematical physics, vol. I: Functional Analysis. Academic Press. 1972.
  21. [21] W. Rudin, Functional analysis . McGraw-Hill, New York, 1973.
DOI: https://doi.org/10.1515/auom-2015-0021 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 22
Submitted on: Jan 1, 2014
Accepted on: Mar 1, 2014
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Primitivo Acosta-Humánez, Kevin Esmeral, Osmin Ferrer, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.