Have a personal or library account? Click to login
On neighborhoods of functions associated with conic domains Cover
By: Nihat Yağmur  
Open Access
|Apr 2017

References

  1. [1] R.M. Ali, K.G. Subramanian, V. Ravichandran and O.P. Ahuja, Neighborhoods of starlike and convex functions associated with parabola, J. Ineq. and Appl., 10.1155 (2008) 346279.10.1155/2008/346279
  2. [2] O. Altıntaş and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Sci., 19 (1996) 797-800.10.1155/S016117129600110X
  3. [3] O. Altıntaş, H. Irmak, H. M. Srivastava, Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator, Comput. Math. Appl. 55 (2008), no. 3, 331–338.10.1016/j.camwa.2007.03.017
  4. [4] A.W. Goodman, Univalent Functions, vols. I-II, Mariner Publishing Company, Tempa, Florida, USA, 1983.
  5. [5] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (1973) 297-326.10.4064/ap-28-3-297-326
  6. [6] S. Kanas and A. Wisniowska, Conic regions and k− uniform convexity, J. Comput. Appl. Math., 105 (1999) 327-336.10.1016/S0377-0427(99)00018-7
  7. [7] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000) 647-657.
  8. [8] B. S. Keerthi, A. Gangadharan, H. M. Srivastava, Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients, Math. Comput. Modelling 47 (2008), no. 3-4, 271-277.10.1016/j.mcm.2007.04.004
  9. [9] G. Murugusundaramoorthy, H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article 24, 8 pp. (electronic).
  10. [10] K.I. Noor, S.N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl. 62, (2011), no.5, 2209-2217.10.1016/j.camwa.2011.07.006
  11. [11] H. Orhan, E. Kadioğlu, Neighborhoods of a class of analytic functions with negative coefficients, Tamsui Oxf. J. Math. Sci. 20 (2004), no. 2, 135-142.
  12. [12] H. Orhan, M. Kamali, Neighborhoods of a class of analytic functions with negative coefficients, Acta Math. Acad. Paedagog. Nyházi (N.S.) 21 (2005), no. 1, 55–61 (electronic).
  13. [13] H. Orhan, On neighborhoods of analytic functions defined by using Hadamard product, Novi Sad J. Math. 37 (2007), no. 1, 17-25.
  14. [14] H. Orhan, Neighborhoods of a certain class of p-valent functions with negative coefficients defined by using a differential operator, Math. Inequal. Appl. 12 (2009), no. 2, 335-349.10.7153/mia-12-26
  15. [15] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture, Comm. Math. Helv., 48 (1973) 119-135.10.1007/BF02566116
  16. [16] St. Ruscheweyh, Neighborhoods of univalent functions, Proceedings of the American Mathematical Society, 81 (1981) 521-527.10.2307/2044151
  17. [17] S. Shams, S.R. Kulkarni, J.M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. & Math. Sci. 55 (2004) 2959-2961.10.1155/S0161171204402014
  18. [18] T. Sheil-Small and E.M. Silvia, Neighborhoods of analytic functions, Journal d’Analyse Mathematique, vol. 52, (1989) 210-240.10.1007/BF02820479
DOI: https://doi.org/10.1515/auom-2015-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 291 - 302
Submitted on: May 8, 2014
Accepted on: Jun 30, 2014
Published on: Apr 4, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Nihat Yağmur, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.