Have a personal or library account? Click to login
On a subclass of analytic functions involving harmonic means Cover

References

  1. [1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25(2012), 344-351.10.1016/j.aml.2011.09.012
  2. [2] D. Bansal, Fekete-Szegö problem for a new class of analytic functions, Int. J. Math. Mathematical Sciences 2011(2011), article ID: 143096, 5 pages.10.1155/2011/143096
  3. [3] D. A. Branan, J. G. Clunie, W. E. Kirwan, Coefficient estimates for a class of starlike functions, Canad. J. Math. 22(1970), 476-485.10.4153/CJM-1970-055-8
  4. [4] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc. 8(1933), 85-8910.1112/jlms/s1-8.2.85
  5. [5] S. P. Goyal, P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20(2012), issue 3, 179-182.10.1016/j.joems.2012.08.020
  6. [6] A. W. Goodman, ‘Univalent functions’, Polygonal Publishing House, Washington, New Jersey, 1983.
  7. [7] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18(1967), 63-68.10.1090/S0002-9939-1967-0206255-1
  8. [8] X.-F. Li, A.-P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum no. 30, 7(2012), 1495-1504.
  9. [9] S.S. Miller, P.T. Mocanu, ‘Differential Subordinations: Theory and Applications’, Dekker, New York, 2000.10.1201/9781482289817
  10. [10] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32(1969), 100-112.10.1007/BF00247676
  11. [11] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables, Theory Appl. 44(2001), 145-163.10.1080/17476930108815351
  12. [12] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(2010), 1188-1192.10.1016/j.aml.2010.05.009
  13. [13] Q.-H. Xu, Y.-C. Gui, H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(2012), 990-994.10.1016/j.aml.2011.11.013
DOI: https://doi.org/10.1515/auom-2015-0018 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 267 - 276
Submitted on: Apr 30, 2014
Accepted on: Jun 29, 2014
Published on: Apr 4, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Andreea-Elena Tudor, Dorina Rǎducanu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.