Have a personal or library account? Click to login
An adaptive stepsize algorithm for the numerical solving of initial-value problems Cover

An adaptive stepsize algorithm for the numerical solving of initial-value problems

Open Access
|Apr 2017

References

  1. [1] Abraham, O., Bolarin, G., On error estimation on Runge-Kutta methods, Leonardo Journal of Sciences, vol. 18 (2011), pg. 1-10.
  2. [2] Burden, R.L., Faires, J.D., Numerical Analysis, Pws Publishing Company, Boston, USA, 2001.
  3. [3] Butcher, J.C., The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods, Wiley, 1987.
  4. [4] Conte, S. D., deBoor, C., Elementary Numerical Analysis: An Algorithmic Approach, 3rd Ed., McGraw-Hill, New York, 1980.
  5. [5] Cheney, W., Kincaid, D., Numerical Mathematics and Computing, Brooks/Cole Publishing Company, Fourth Edition, 1995.
  6. [6] Chung, T.J., Computational Fluid Dynamics, 2-nd Edition, Cambridge University Press, 2010.10.1017/CBO9780511780066
  7. [7] Guiplin, C., Manuel de Calcul Numérique Appliqué, EDP Science, 1999.10.1051/978-2-7598-0252-4
  8. [8] Henrici, P., Elements of Numerical Analysis, Wiley, 1964.
  9. [9] Holmes, M.H., Introduction to Numerical Methods in Differential Equations, Springer, 2007.10.1007/978-0-387-68121-4
  10. [10] Jedrzejewski, F., Introduction aux méthodes numériques, Springer-Verlag, 2005.
  11. [11] Lambert, J.D., Computational Methods in Ordinary Differential Equations, Wiley, 1973.
  12. [12] Marin, M., Florea O., On temporal behavior of solutions in Thermoelasticity of porous micropolar bodies, An. St. Univ. Oidius Constanta vol. 22, issue 1, (2014), 169-188.10.2478/auom-2014-0014
  13. [13] Marin, M., Sharma, K., Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, An. St. Univ. Oidius Constanta vol. 22, issue 2, (2014), 151-175.10.2478/auom-2014-0040
  14. [14] MATLAB The Language of Technical Computing, MathWorks, 2004.
  15. [15] Philips, G.M., Taylor, P.J., Theory and Applications of Numerical Analysis, 2-nd Ed., Academic Press, 1996.10.1016/B978-012553560-1/50003-3
  16. [16] Press, H.W., Teukolsky, S.A., Veterling, T.W., Flannery, B., Numerical Recipes, 3-rd Ed., Cambridge University Press, 2007.
  17. [17] Ricardo, H., A modern introduction to differential equations, Elsevier Academic Press, 2009.
  18. [18] Quarteroni, A., Sacco, R., Saleri, F., Méthodes Numériques - Algortihmes, analyse et applications, Springer, 2007.
  19. [19] Wu, X., A class of Runge-Kutta formulae of order three and four with reduced evaluations of function, Applied Mathematics and Computation 146 (2003), 417-432.10.1016/S0096-3003(02)00593-3
DOI: https://doi.org/10.1515/auom-2015-0012 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 185 - 198
Submitted on: May 2, 2014
Accepted on: Jun 28, 2014
Published on: Apr 4, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Romulus Militaru, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.