Have a personal or library account? Click to login
A simulation algorithm for a single server retrial queuing system with batch arrivals Cover

A simulation algorithm for a single server retrial queuing system with batch arrivals

Open Access
|Apr 2017

References

  1. [1] Artalejo, J.R. a.o., Retrial queuing systems: A computational approach, Springer, 2008.10.1007/978-3-540-78725-9
  2. [2] Artalejo, J.R. a.o., Standard and retrial queuing systems: A comparative analysis, Matematica Complutense, vol. 15 (2002), no. 1, 101-129.
  3. [3] Artalejo, J.R. a.o., On the Single Server Retrial Queue with Batch Arrivals, The Indian Journal of Statistics, Vol. 66 (2004), no. 1, 140-158.
  4. [4] Choi, B,D. a.o., Retrial queues with collision arising from unslotted CSMA/CD protocol, Queueing Systems Theory Appl. (1992), 335-356.10.1007/BF01163860
  5. [5] Cormen, T. H. a.o., Introduction to algorithms, MIT Press, Cambridge, 1992.
  6. [6] Devroye, L., Non-uniforme random variate generation, Springer Verlag, New York, 1986.10.1007/978-1-4613-8643-8
  7. [7] Falin, G.I. a.o, Retrial Queues, Chapman and Hall, London, 1997.10.1007/978-1-4899-2977-8
  8. [8] Falin, G.I. a.o, A single-server batch arrival queue with returning customers, European Journal of Operational Research (2010), 186-179.10.1016/j.ejor.2009.03.033
  9. [9] Florea, I., One algorithmic approach of first-come-first-served queuing systems, Bucharest University Annals, Informatics, 49 (2000), 41-58.
  10. [10] Florea, I. a.o, An algorithmic approach of retrial queuing system with one serving station Part I: The description of the simulation algorithm, Bulletin of the Transilvania University of Braşov, Vol. 6(55) (2013), no. 2, 95-106.
  11. [11] Gross, D. a.o., Fundamentals of queuing theory, fourth edition, John Wiley & Sons, 2008.
  12. [12] Leahu, A., Statistical Inference on the Traffic Intensity for the M/M/s Queuing System, Analele Stiintifice ale Universitatii. Ovidius Constanţa, Vol. 11(1) (2003), no. 2, 101-104.
  13. [13] Krishna, K. B. a.o., The M/G/1 retrial queue with Bernoulli schedules and general retrial times, Computers and Mathematics with Applications 43 (2002), 15-30.10.1016/S0898-1221(01)00267-X
  14. [14] Nawel K. A. a.o., On the asymptotic behaviour of M/G/1 retrial queues with batch arrivals and impatience phenomenon, Mathematical and Computer Modelling (2012), 654665.
  15. [15] Yamamuro K., The queue length in an M/G/1 batch arrival retrial queue, Queueing Syst (2012), 187205.10.1007/s11134-011-9268-4
  16. [16] Yang, T. a.o. J.G.C, A survey on retrial queues, Queueing Systems Theory Appl (1987), 203-233.10.1007/BF01158899
DOI: https://doi.org/10.1515/auom-2015-0007 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 83 - 98
Submitted on: May 8, 2014
Accepted on: Jun 30, 2014
Published on: Apr 4, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Ion Florea, Corina-Ştefania Nǎnǎu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.